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Abstract 

Piles of personal computers (PoPCs) have begun to challenge the performance of 

the traditional Massively Parallel Processors (MPPs) and the less traditional networks of 

workstations (NOWs) as platforms for parallel computing. Large clusters of PCs have 

reached and at times exceeded the performance of modern MPPs at a fraction of the cost. 

Built with commodity components, these clusters can be constructed for about half the 

cost of a comparable NOW. The primary competing operating systems (O/S) in use on 

PoPCs are Linux and Windows NT. 

This thesis investigation compares the performance of an NT cluster with that of a 

Linux cluster, a NOW, and an MPP. A comparison of the MPI tools available for NT is 

also accomplished. These comparisons are made using the Pallas benchmark suite for 

MPI and a parallel data mining algorithm. This data mining technique, known as the 

Genetic Rule and Classifier Construction Environment (GRaCCE), uses a genetic 

algorithm to mine decision rules from data. 

Results from experimentation and statistical analysis have produced three 

important conclusions. First, NT clusters are viable, cost effective alternatives to Linux 

clusters, NOWs, and MPPs for parallel computing. Second, the two primary 

communication libraries currently available for NT—PaTENT MPI and MPI/Pro—are 

statistically equivalent in performance. Third, the parallel GRaCCE algorithm is capable 

of relatively good speedup and efficiency, even for significantly unbalanced processor 

workloads, if the effects of first loop iteration caching are ignored. 

XVI 



/     Introduction 

1.1 From Supercomputers to Clusters of PCs 

Starting with the very first computers, the demand for computing power has 

steadily outpaced the increase in computer performance. To meet this demand, 

supercomputer manufacturers began to take advantage of the power of multiple 

processors simultaneously solving the same problem. [Kumar94] This move to parallel 

computing began with the replacement of the typical single high-speed, high-cost, 

proprietary processor in supercomputers with a series of lower cost microprocessors 

connected by a high-speed interconnection network. The speed of these microprocessors 

over the last decade has typically been within one order of magnitude of the speed of the 

fastest serial computers.[Kumar94] This change has allowed supercomputer manufacturers 

to increase performance while maintaining or even reducing costs. Even so, the times 

required to architect and build these massively parallel processors (MPPs) meant that by 

the time they reached the consumer, the microprocessors were much slower than those 

currently being sold. To take advantage of this rapid increase in microprocessor speed, 

many users have turned to Networks of Workstations (NOW) for running parallel 

applications. Two important advances that made this possible were the increased 

performance of interconnection networks and the development of standardized tools and 

utilities for parallelizing applications. Interconnection networks with speeds of up to 100 

megabits per second (Mbps) are readily available at commodity prices and gigabit speed 

networks, [GEA] which are available now at a much higher cost, are rapidly becoming 

affordable.    For instance, gigabit Ethernet switches can currently be purchased for 



approximately $1000/port. Similarly equipped Fast Ethernet switches (100 Mbps) sell 

for roughly one-tenth of this cost or about $100/port.[Provant] 

One example of a standard communication tool now available for parallel 

processing is the Message Passing Interface (MPI). [MPI] A broad base of commercial 

vendors, academia, and users worked together to develop this standard. Implementations 

of the MPI standard have resulted in the availability of a number of instantiations. One 

of the more popular is MPICH. [Gr°PP96] Developed by Argonne National Labs (ANL) in 

conjunction with Mississippi State University (MSU), MPICH is a portable version of 

MPI which works on most UNIX type operating systems. 

Using MPICH, NOWs have achieved significant performance improvements over 

MPPs for such applications as Fast-Fourier Transforms (FFT) at a fraction of the cost. 

[Gindha97] [AnderS95]  Eyen so> ugers haye begUn t0 i00^ at even more inexpensive ways of 

achieving the same performance. One way this goal has been accomplished is by using 

commodity personal computers (PCs) in what is commonly referred to as Piles of PCs 

(PoPCs) or Clusters of PCs (COPs). Since the idea behind using PoPCs is to reduce 

costs, a common operating system in use on these systems is Linux,[Linuxl a UNIX-like 

operating system freely available, including source code, from the Internet. 

A more recent move in PoPC research has been to make use of PCs running the 

Windows NT operating system. [Wmdows] One of the primary factors contributing to the 

use of clusters of NT workstations for parallel computing is the growing number of these 



machines in use, both in government, academic, and commercial organizations. This 

growth means that these machines are readily available for research and potential 

harnessing of idle processor cycles, known as cycle harvesting. Another driving force 

behind NT PoPCs is the development of tools for parallelizing applications that execute 

under the Windows environment. This development has been primarily focused on MPI. 

[MPT] current research developments have lead to several versions of MPI for NT, which 

are discussed in detail in Chapter 2. 

1.2 AFIT Bimodal Cluster (ABC) of NT/Linux PCs 

To facilitate this research effort, a cluster of PCs has been installed in the AFIT 

Parallel lab. This cluster, known as the AFIT Bimodal Cluster (ABC), currently consists 

of a 200 MHz Pentium PC and four 333 MHz, six 400 MHz, and one 450 MHz Pentium 

II PCs connected via a 100 Mbps switched Ethernet network. These machines are dual- 

bootable under either Linux (Red Hat 5.0) or Windows NT (version 4.0). To avoid 

confusion, the name ABC-NT is used to refer to the ABC cluster running under NT. An 

Ethernet switch provides direct connections between every CPU. The research outlined 

in this thesis utilizes the ABC-NT and ABC-Linux cluster and compares the different 

MPI versions available for NT described in Section 2.3.3. 

Since a comprehensive review of all possible parallel applications is not feasible, 

this thesis effort focuses on a single area of importance to the Air Force - Data Mining. 

The amount of data collected by the Air Force continues to grow at exponential rates. 

[USAFFS95]  rp^^ growtri j^g highlighted the need for effective means of partitioning this 



collected data into meaningful subsets for analysis. Current research in the field of data 

mining is providing some very useful techniques for accomplishing this goal. One such 

technique is discussed in the next section. 

1.3 Data Mining Using Genetic Algorithms 

Data mining is "the automated search for interesting and useful relationships 

between attributes in databases."[Marmel98] The field of data mining is within itself very 

broad. Researchers have developed many techniques to "mine" information from data 

including decision trees, neural networks, linear discriminants, genetic algorithms, and 

nearest-neighbor classifiers. [Weiss91] The primary application used for testing and 

experimentation in this thesis effort is based on a data mining algorithm developed by 

AFIT Ph.D. candidate Maj. Robert Marmelstein. This algorithm, known as the Genetic 

Rule and Classifier Construction Environment (GRaCCE), uses features of each of the 

aforementioned data mining techniques. Chapter 3 provides a detailed description of the 

original and modified GRaCCE algorithm. 

1.4 Research Overview and Summary 

Maj. Marmelstein developed the original GRaCCE code using MatLab. [MatLab] 

This algorithm produces a less complex rule set than traditional decision tree algorithms 

such as CART rBriema84l and C4.5, [Quinla93] with about the same accuracy; however, the 

performance of the original GRaCCE algorithm is much slower. One of the goals of this 

thesis effort is to convert this code to C++ and parallelize it using MPI. This code is then 

used to determine if parallelization of the algorithm eliminates the performance 

4 



disadvantage as expected. The resulting code, along with the Pallas MPI benchmarks 

described in Chapter 4, is also used to evaluate the performance of the ABC-NT and 

Linux clusters and the major MPI implementations for NT currently available. To 

summarize, the objectives of this research are as follows: 

1) Compare the performance of an NT PoPC with that of a Linux PoPC. 

2) Compare the performance of the various MPI implementations for NT (MPII Pro & 

POTENT MPi). 

3) Analyze the performance of a parallel C++ version of the GRaCCE algorithm. 

These objectives are accomplished by performing a series of experiments and 

analyzing the collected data. The results documented in this thesis are written using the 

following assumptions about the reader. It is assumed: 

1) That the reader has at least a general knowledge of the primary areas of the Computer 

Science/Computer Engineering discipline to include: 

a) Computer architectures 

b) Computer operating systems 

c) Parallel and distributed computing 

d) General algorithms and algorithm complexity 

e) Computer programming 

2) That the reader has general knowledge of probability and statistics. 



1.5 Outline of Chapters II through V 

Chapter 2 provides the background on the emergence of PoPCs, the use of NT on 

PoPCs, and the tools available for use with these systems. Furthermore, an examination 

of some of the existing NT clusters is provided. This chapter also provides detailed 

information on data mining techniques and genetic algorithms. In Chapter 3, the 

algorithm domain for GRaCCE is discussed, as well as, various task decomposition and 

load balancing techniques. Chapter 4 lays out the methodology and experiment design 

for this research. Chapter 5 provides an analysis of the results of this thesis effort. This 

chapter is divided into three sections. First, a comparison of the performance of the 

ABC-NT PoPC with other parallel systems is discussed. Special attention is given to the 

comparison between NT and Linux PoPCs. Secondly, a comparison is made between the 

various MPI NT implementations. The advantages and disadvantages of each, as 

indicated by scientific experimentation, are discussed. Lastly, the performance of the 

parallel GRaCCE algorithm is compared to that of the serial version and the original 

MatLab code. Chapter 6 summarizes the results that were discussed in Chapter 5 and 

presents conclusions on the suitability of NT PoPCs for parallel computing. The various 

contributions provided by this research, as well as, recommendations for future research 

are also included in Chapter 6. 



2     Background 

This chapter provides limited background information on parallel systems. This 

information is necessary to understand the analysis of the experimental results given in 

Chapter 5. The chapter begins with a history in Section 2.1 of Massively Parallel 

Processors (MPP) and a description of the specific MPP used in this research. Sections 

2.2 and 2.3 provide detailed information on Networks of Workstations (NOW) and Piles 

of PCs (PoPCs) and describe some of the current research in these areas. A description 

of AFIT's NT/Linux PoPC is provided in Section 2.4. The following section provides 

background information on data mining and some of the current research in this field of 

study. The final section provides a summary of this chapter. For a general overview of 

the principals of parallel processing, the reader is referred to Appendix A and [Kumar94]. 

2.1 Massively Parallel Processors (MPPs) 

Rapid advancements in VLSI technology in the early 1980's led to lower prices 

and an increased demand for personal computers and workstations. As the volume of 

sales increased, the development costs were amortized over larger numbers of units, 

reducing the production costs further and driving even greater technological 

advancements. As PC sales outdistanced supercomputer sales by several orders of 

magnitude, the price-performance gap widened. Seeking to take advantage of these 

advancements in microprocessor technology, computer manufacturers introduced the first 

commercial MPPs in the 1980's.   At peak efficiency, microprocessor-based computers 



such as Intel's Paragon XP/S and MasPar's MP-2 could exceed the speed of traditional 

single-processor supercomputers, such as the Cray Y/MP and the NEC SX-3. [Qumn94] 

Modern MPPs may consist of tens, hundreds, or even thousands of 

microprocessors connected by a high-speed interconnection network. Because of the use 

of mass-produced commodity microprocessors, the cost of upgrading these systems is 

significantly less than that of the traditional supercomputers. Another major advantage of 

MPPs is that they can be built to achieve an absolute performance, which is unobtainable 

by a mainframe or supercomputer. Consider the following updated example from 

Tanenbaum's distributed O/S text:[Tanenb95J 

If 10,000 modern CPU chips, each running at 500 Million Instructions Per Second 

(MIPS), were used to build an MPP, it would have a total theoretical performance 

of 5,000,000 MIPS. For a supercomputer with a single processor to achieve this 

same performance, it would have to execute an instruction in 0.0002 nanoseconds 

(0.2 picoseconds), a feat which is impossible because of speed of light 

restrictions. 

Other advantages of MPPs, according to [Anders95], are the communication 

performance and global system view. The high communication performance in MPPs is 

primarily due to the close proximity of the network interface to the processors. This 

interface is typically connected to the processor-memory bus, rather than the slower 

standard I/O bus.  The global system view provided by MPPs allows users to run their 



applications on a large collection of processors as if it were a single entity. By using a 

global scheduler, the user is granted exclusive access to individual processors as they 

become available and doesn't have to be concerned with contention for resources. 

Although MPPs have significant advantages, especially when compared to 

traditional supercomputers, they are still lacking in a few areas. A major disadvantage is 

the engineering lag required in developing the network hardware and proprietary 

operating systems used by these MPPs. This time constraint means that the 

microprocessors in MPPs are often a year or two behind the current technology. In 

addition, the cost of this development is significant when compared to commodity 

hardware and software prices. These disadvantages have made other parallel computing 

alternatives, such as NOWs and PoPCs, more attractive. 

Although the primary focus of this research is a comparative analysis of NT and 

Linux PoPCs, some experiments are performed with an MPP and a NOW for additional 

insight into the differences between MPPs, NOWs, and PoPCs. The MPP used in this 

research is an IBM SP2 [ffiMSP2] maintained by the Aeronautical Systems Command's 

(ASC) Major Shared Resource Center (MSRC) at Wright-Patterson AFB, OH. [MSRC] 

The MSRC SP2 is comprised of 256 135 MHz RS/6000 P2SC processors, of which 233 

are available for batch computing. The compute nodes each have one gigabyte (GB) of 

available RAM memory. The interconnection network (ICN) for the SP2 is composed of 

two   High-Performance   Parallel   Interfaces   (HiPPI)   with   a   maximum   theoretical 



throughput of 800 Mbps.   The topology of this ICN is essentially that of an omega1 

network. 

2.2 Networks of Workstations (NO Ws) 

In the paper "A Case for NOW", [Anders95] the authors present several advantages 

of NOWs for parallel computing over traditional supercomputers and MPPs. Among 

those advantages, they cite an average price-performance advantage for workstations, 

which is a factor of two higher than a comparable supercomputer or MPP. In addition, 

the authors point out the availability of large amounts of aggregate DRAM in NOWs as a 

second advantage. In his Master's thesis,[Gindha97] Gindhart compares the performance of 

a network of Sun workstations with two MPPs - the Intel Paragon XP/S and IBM SP2. 

He concludes from his experiments that the NOW offers at least 85% of the performance 

of the MPPs for approximately 50% of the cost - a significant cost-performance 

advantage. Again, the large sales volume of workstations, as compared to MPPs, along 

with the faster processors normally found in NOWs, are the primary factors contributing 

to this price-performance advantage. 

The NOW used by Gindhart was constructed at AFIT in October 1996. This 

system consists of four 175 MHz and two 200 MHz Sun Ultra workstations connected via 

a 1.28 Gbps Myrinet crossbar switch and a 10 Mbps Ethernet hub. Each of the 

workstations contains 128 MB of RAM, a 32 KB level 1 cache, a 512 KB level 2 cache, 

1 For more information of omega networks see Appendix A, Section A. 1.3.1. 
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and two 1 GB local hard drives. Since the Myrinet ICN on this NOW has a much higher 

theoretical throughput (2.56 Gbps in full-duplex mode) than that of ABC's fast Ethernet 

switch (200 Mbps in full-duplex mode) and the processors are much slower, a completely 

objective comparison of the two systems cannot be accomplished. However, the Pallas 

benchmarks and parallel GRaCCE algorithm are run on this system to provide insight 

into: 

a) The effect of the ICN on the overall communication costs of a parallel system. 

b) The effect of rapid technological change on parallel system performance, 

specifically the difference in processor performance in only a two year span 

between the construction ofAFIT's NOW and ABC clusters. 

c) The effect of messaging layers on the various types of Interconnection 

Networks. 

d) The relative price-performance gap between PoPCs, NOW, and MPPs. 

e) How using speedup as the only performance metric for an algorithm can be 

deceiving. 

Since PCs have an even higher volume of sales and thus lower unit costs and have 

comparable processor performance to workstations, PoPCs become the next logical step 

in capitalizing on the cost-performance advantage. The next section discusses some of 

the common features of PoPCs and describes some of the current systems in use. 
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2.3 Piles of PCs (PoPCs) 

2.3.1 Beowulf-The first PC clusters 

Since the main objective for using PoPCs is to reduce costs, a common operating 

system in use on these computers is Linux.[Linux] A PoPC running Linux is commonly 

referred to as a Beowulf, named after the original system created at the National 

Aeronautics and Space Administration (NASA) in 1994. [Ridge97] Linux is a POSIX 

compliant operating system kernel that is freely available. The major advantage of this 

O/S, other than the fact that it is free, is that the complete source code is available. This 

allows implementers to modify the O/S to best suit their needs for such reasons as I/O 

driver and messaging layer optimizations. 

One of the disadvantages of Linux is the lack of technical support. There are 

numerous technical books and magazines dedicated to Linux, as well as mailing 

lists/users groups, [LUGR] which provide some useful troubleshooting information; 

however, there are no help desks to call, as is the case with commercial software, if one 

can't resolve a given problem with a "free" version of Linux. A commercial version of 

Linux is available from Red Hat Software, Inc. [RedHat] Users can purchase technical 

support with this software at an additional cost. 

Another disadvantage of Linux is the lack of available applications that run under 

the Linux O/S. The number of applications for Linux, though still relatively small, is 

growing rapidly, due in part to recent announcements from various major computer 

manufacturers that they will offer Linux as a pre-installed alternative on their systems. 
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2.3.2 NT Clusters 

A more recent move in PoPC research has been to make use of PCs running the 

Windows NT operating system. twindows] NT is a commercial, fault tolerant, 32-bit 

operating system developed by Microsoft Corporation. It supports pre-emptive multi- 

tasking and threading. It is also POSDC compliant and supports symmetrical multi- 

processing (SMP). POSIX compliance allows it to run on multiple platforms, including 

the Intel x86, IBM PowerPC, MIPS, and DEC Alpha. NT is sold as two separate 

products - NT Workstation (NTW) and NT Server (NTS). NTW is optimized for 

desktop computers where foreground applications receive the highest priority. NTS, on 

the other hand, is optimized for background applications and is intended for use on 

enterprise servers (e.g. to provide mail, file, or print services). Costs for the current 

version of this operating system start at around one hundred-fifty dollars (NTW price). 

So, cost is obviously not the driving factor for its use in PoPCs. One of the main factors 

is NT's current install base and growing popularity, as both an enterprise server and 

desktop operating system. Microsoft shipped more than 1.3 million copies of NT server 

in 1997, far outpacing even its nearest competitor Novell, which shipped nine hundred 

thousand units of NetWare that year. [Festa98] Hence, computers running NT are readily 

available. 
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2.3.3 MPIonNT 

Another driving force behind NT PoPCs is the development of tools for 

parallelizing applications that execute under the Windows environment. This 

development has been primarily focused on MPI. [MPI] Current research developments 

have lead to the versions of MPI for NT listed in Table 1. Each of these versions is 

discussed in the sections that follow. 

Software Name Developed By 

WinMPICH Engineering Research Center (ERC) at Mississippi State University 
(MSU) 

MPI/PRO™ MPI Software Technology Inc (MSTI) 
WMPI Department of Computer Engineering, Coimbra University, Portugal 
PaTENT WMPI 4.0 Genias Software GmbH 
MPI-FMIHPVM Department of Computer Science, University of Illinois at Urbana- 

Champaign (UIUC) 

Table 1: MPI software for Windows NT 

2.3.3.1 WinMPICH and MPI/PRO 

WinMPICH, also known as MPICH/NT, [ERC] is a port of MPICH for NT 

platforms. This software supports both shared and distributed memory architectures. 

The developers wrote the original WinMPICH libraries to explore threads in the device 

layer for communication, TCP/IP support was added later. [Baker98] MSU created two 

designs of the shared memory device code for WinMPICH, one design supports POSK 

threads, the other uses polling. Published reports indicate that the threaded version 

consistently outperforms the polling version.[Hebert98] Because of a lack of funding, MSU 

no longer supports WinMPICH.   The code has been licensed to MPI Technology Inc, 
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which has produced a commercial version of this software called MPI/Pro™.[MST] AFIT 

has acquired an eight-processor license for this software, which is used in this research on 

our Cluster of NT Workstations, known as the AFIT Bimodal Cluster (ABC). (See 

Section 2.4) 

2.3.3.2 WMPI and PaTENT MPI 4.0 

WMPI is based on MPICH and is a full implementation of the MPI standard for 

Win32 platforms. WMPI also includes support for the ch_p4 device standard. [CH-P4] 

This standard defines the communication interface between workstations in a 

heterogeneous network. Ch_p4 support allows interaction between Windows 95/NT 

workstations running WMPI and UNIX machines running MPICH. Similar to 

WinMPICH, a commercial version of WMPI is also available - Parallel Tools 

Environment on NT (PaTENT) MPI 4.0.[PaTENT] The PaTENT software is loaded on the 

ABC cluster and used in this research. 

2.3.3.3 HPVM 

The goal of the High Performance Virtual Machines (HPVM) project at UIUC is 

"to deliver high-performance computing from distributed computational and network 

resources."[Chien97] The National Center for Supercomputing Applications (NCSA) in 

conjunction with the Department of Computer Science at UIUC has built a 256-node NT 

cluster of PCs using the HPVM software. HPVM 1.0 is a collection of high performance 

parallel computing tools, which includes the following: Illinois Fast Messages (FM), 

MPI-FM, FM-DCS (Dynamic Coscheduling), Put/Get-FM, and Global Arrays-FM.  The 
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FM library was written for Myrinet networks and provides highly optimized, low latency 

messaging. [Pakin95] MPI-FM is a high performance implementation of MPI for NOWs 

with a Myrinet network, built on top of the FM library.[Launa97] This software is also free 

and is loaded on the ABC cluster; however, due to the complexity of running this tool 

without the expensive queuing software required for the Java-based front-end, HPVM is 

not used in this research.[HPVM] [Platform] 

2.4 AFIT Bimodal Cluster (ABC) 

The PoPC used in this research was constructed and configured by the graduate 

students in AFIT's parallel lab. Details about ABC's hardware, software, and 

configuration are outlined in the sections that follow. For a diagram of ABC, see 

Appendix B. 

2.4.1 ABC's Hardware Configuration 

ABC is a cluster of personal computers, consisting of one Dell 200 MHz Pentium 

computer and one Dell 450 MHz, six Dell 400 MHz, and four Gateway 333 MHz 

Pentium U single-processor computers connected via an Ethernet switch. Each of these 

machines is housed in a tower or mini-tower case to allow for expandability. The VO bus 

on the Gateways operates at 66 MHz; the Dell's I/O bus is clocked at 100 MHz. The 

computers are housed in a portable rack, which allows easy access to both the front and 

rear of the cases. 
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To narrow the focus of this research and facilitate analysis of the data collected 

from the experiments outlined in Chapter 4, only a homogeneous subset of the computers 

in ABC are used for this research. Since the 400 MHz PCs comprise the largest 

homogeneous group, these were chosen. Each of the Dell processors has 128 MB of 10 

nanosecond (ns) Synchronous Dynamic RAM (SDRAM), one 8.4 GB SCSI hard drive 

for use under NT, and one 6.4 GB EIDE hard drive for Linux. These machines also have 

a 512 KB Level 2 (L2) cache, a 16 KB instruction and 16 KB data Level 1 (LI) cache. 

Future plans for ABC include increasing the number of nodes to 32 and possibly 64 

computers, to include some Symmetrical Multi-processing (SMP) systems. 

2.4.2 ABC's Interconnection Network 

Initially the ABC cluster was connected via an 8-port 100 Mbps shared Ethernet 

hub. The aggregate network bandwidth of this hub (200 Mbps in full-duplex mode) was 

inadequate for any realistic distributed processing and ABC quickly outgrew the eight 

ports available. This hub was eventually replaced with a 24-port Intel Express 510T fast 

Ethernet switch, operating in full-duplex mode. The network interface cards (NIC) used 

in each of the computers are also full-duplex fast Ethernet. This configuration provides 

ABC with the equivalent of a crossbar network, providing a maximum theoretical 

throughput of 200 Mbps per channel between nodes. One disadvantage of this switch, 

which was discovered during benchmarking of the cluster, is that, as with the original 

hub, the maximum aggregate network bandwidth of 800 Mbps, although four times 

greater than the hub is insufficient. Tests using the Pallas benchmark suite show that the 
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network can become saturated when using only six processors for high communication 

processing. 

2.4.3 O/S and Software Tools on ABC 

Each machine is dual-bootable2 under either Windows NT 4.0 or Linux 2.0.33 

operating systems. Parallel communication/programming is handled through MPI/Pro 

1.2.3 or PaTENT MPI 4.09 for Windows NT and MPICH version 1.1.0 for Linux. [MST] 

[PaTENT]   [Gropp96]     TwQ  Qf ^  NJ computers  ^  loaded  with  Microsoft's  Visual  C++ 

version 6.0 compiler. This compiler is used for the GRaCCE conversion/compilation. 

The Linux implementation provides a variety of compilers including the freeware 

applications GNU C, G77, and G++, as well as, a commercial Fortran 90 compiler - 

VAST/f90 [GNUGCC] [VAST/f9°] 

There are no really effective visualization tools for NT loaded on ABC, however, 

the Performance Monitor application, which comes with NT, and the Intel Device View 

application, which comes with the switch, provide some level of insight into the network 

performance. The Linux system is loaded with Upshot (part of the MPICH distribution) 

[MPI] and Vampir 2.0, an MPI performance analysis tool developed by Pallas.[Pallas] 

2
 Dual-bootable implies that a computer is capable of "booting" or starting under either of two different operating 

systems. 
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2.5 Data Mining 

2.5.1 Introduction 

Large sets of data are normally not very useful unless they can be grouped into 

meaningful sub-sets. This partitioning of data is known as classification. A good 

example of a large body of data, which is relatively unusable without some type of 

classifier, is the data available on the World Wide Webb (WWW). The search engines 

that Internet "surfers" use daily provide a semi-effective form of classification. It is only 

semi-effective because although a user may be able to find data relating to a particular 

subject of interest, the specific information needed will still have to be extracted from a 

large set of unrelated/semi-related data. This type of classification is known as text 

mining.[PMSI] 

Another form of classification, which is the subject of this research, is data 

mining. The distinction between data mining and text mining is in the form of the data 

being analyzed. As the name implies, text mining seeks to extract meaningful 

relationships from text. The Internet search engines accomplish this task in a number of 

ways, ranging from simple word counting to computer "world knowledge" techniques. 

Data mining, on the other hand, also, seeks to extract "higher" knowledge from raw data, 

but it does this through numerical processing of quantitative and qualitative data.[PMSI] In 

other words, the data being analyzed, if not already in numerical form, are assigned 

numerical values based upon some type of encoding scheme. It is noted that this 

distinction between data mining and text mining is not universally accepted, as some 

consider text mining just a more specialized form of data mining, while still others even 
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consider classification a form data mining. In addition, researchers have recently 

proposed a new technique, known as web mining, for applying the principles of data 

mining to Internet searches. 

2.5.2 Description 

Classification is a subject of interest to many different disciplines. In engineering, 

it is often referred to as pattern recognition. In computer science and artificial 

intelligence, it is also known as machine learning. It is not possible to discuss 

classification methods for computer systems without referring to learning systems. 

According to [Weiss91], "a learning system is a computer program that makes decisions 

based on the accumulated experience contained in successfully solved cases." From this 

definition we can then deduce that the objective of classification methods, based on the 

learning system approach, is to "learn" (i.e. instantiate a given model) from sample data, 

thus enabling successful classification and prediction on new data.[Weiss91] [Weiss98] 

There are two general types of classification methods - unsupervised and 

supervised. [Weiss91] in supervised classification, the classifier uses a training set to 

"learn" how to classify data. This training set is a set of sample objects for which the 

classes are known. A human expert has pre-determined the choice of learning cases in 

this set. In unsupervised classification, there are no known cases. It is assumed that the 

sample data contains natural statistical groups of patterns that represent particular types 

of identifiable features. This type of classification is much more difficult and potential 

for success very limited.    In this research, we focus on the following supervised 
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classification methods: decision trees, neural networks, linear discriminants, and nearest- 

neighbor classifiers. 

2.5.3 Decision Trees 

Currently the most highly developed classification method is the decision tree. 

[Weiss98] ^ decision tree consists of nodes, which represent a single test or decision, and 

branches. For binary trees, the decision at each node may be true or false. This decision 

may also be whether a single parameter is greater than some constant. As with regular 

trees, the starting node is known as the root. As a feature traverses down the tree, it 

branches right or left based on the decision at each node, until it reaches a leaf node of 

the tree, which corresponds to a specific class. An example of a binary tree where the 

decisions are true or false is shown in Figure 1.[Weiss91] 

False 

Class 1 Class 2 Class 3 Class 4 

Figure 1: Binary Decision Tree 

An advantage of the decision tree method is that it is usually much faster, both 

during the training and application phase, than many of the other classification methods. 

One disadvantage is that they are not as flexible at modeling complex distributions as 

either neural networks or nearest neighbor methods.   Another disadvantage, which is 
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discussed in more detail in Section 2.5.8, is that decision tree methods often produce 

overly complex classification rule sets. 

2.5.3.1 CART 

One of the most popular classification algorithms, based on the decision tree 

method, is the Classification and Regression Trees (CART) algorithm.[Bnema84] CART, 

which uses binary decision trees for both prediction and classification, is used for 

"classification or regression analysis of large, complex data sets containing many 

variables."[UCLA1 This algorithm recursively searches the sample data to produce an 

optimal set of decision nodes in an extremely large tree. The tree is then "pruned" of any 

branches that impair the overall accuracy. The result is the simplest tree that gives the 

maximum accuracy. The main advantage of the binary tree produced by CART is that its 

structure is easy to understand, interpret, and use. Even so, the rule set is still overly 

complex compared to that produced by GRaCCE. [Manne 

2.5.3.2 C4.5 

Another decision tree algorithm, which was proposed by J. Quinlan in 1993 is 

C4.5.[Quüjla93] Similar to CART, this algorithm generates a classification-decision tree for 

the given data set by recursive partitioning of data. It does this using a depth-first 

strategy. The algorithm constructs the tree by searching over all of the sample data, 

generating a set of possible decisions, and selecting the set of tests that produce the 

optimal classification. A single test is performed on attributes containing a discrete 

number of values. If the values of an attribute are continuous, then binary tests involving 
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every distinct value are performed. [Joshl97] The C4.5 algorithm is not especially fast in 

comparison with other serial decision tree algorithms; however, a freeware parallel 

version, PC4.5, developed at New York University, is available for downloading from the 

Internet. [PC4'5] In addition, as shown in [Marmel98], the rule set produced by this 

method can be more complex than necessary for an accurate description of the data. 

2.5.4 Neural Networks 

Neural networks (or nets) are probably the most researched classification method 

today. They are loosely based on the dense neural connections of the human nervous 

system. The simplest neural net device is the single-output perceptron, which decides 

whether an input pattern belongs to one of two classes. As with linear discriminants, this 

decision is based on a weighted scoring function. A simple example of a single-output 

perceptron is illustrated in Figure 2. [Weiss91] in this figure, II and 12 are the inputs and 

Wl and W2 are the weights assigned to each branch. The weights of a perceptron are 

constants and are "learned" by training on the sample cases. This is done by evaluating 

each sample case sequentially and adjusting the weight if an output is incorrect. 

Outputs 
0   " 

Figure 2: Neural Network Perceptron 
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The major advantage of neural networks is that they are general in nature. They 

can handle complex problems with a large number of parameters. Unfortunately, neural 

networks are very slow, especially in the training phase.[Weiss91] Another disadvantage is 

that it is difficult to determine the nature of the decision process in neural networks. This 

restricts their usefulness in the feature selection phase of data classification.[Whlte97] 

2.5.5 Linear Discriminants 

Probably the most common form of classifier, linear discriminants are quite 

simple in structure. As the name implies, this type of classifier uses a linear combination 

of the evidence to separate (discriminate) among the classes and to select the class 

assignment for a new case. If the problem contains two features, then the classifier can 

be graphically depicted as a line (partition) between two classes or clusters. This is 

illustrated in Figure 3. 

Figure 3: Idealized Class Separation by partition 
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Since a linear discriminant simply implements a weighted sum of the values of 

the observations, the equation can be written in the general form shown in Equation 1. 

[Weiss91] 

W,e, +W2e2 1" Wded — W0 Equation 1: Linear Discriminants 

2.5.6 Nearest Neighbor Classifiers 

This method uses the assumption that an object is most likely to belong to the 

same class as its nearest neighbor in the N-dimensional feature space. In reality, these 

algorithms don't use the single nearest neighbor, but a constant number, k, of nearest 

neighbors. Hence, this method is normally referred to as the k-nearest neighbor (k-NN) 

algorithm. This method is completely nonparametric, that is, nothing is assumed about 

the population. The class that appears most frequently among the k neighbors is chosen. 

To avoid the possibility of a tie, an odd number of neighbors is always chosen. The most 

commonly used measures of distance in this algorithm are absolute distance, euclidean 

distance, and various other normalized distances.[Weiss91] 

Nearest neighbor algorithms are very easy to implement and can produce good 

results if the features are chosen carefully. They do however, have several disadvantages. 

First, like neural networks, they don't simplify the objects to a comprehensible set of 

parameters. Instead, they retain the entire training set as a description of the object 

distribution. Also, if the training set is large, this method is very slow. Lastly, the most 

significant disadvantage is their susceptibility to the presence of irrelevant parameters. 
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Even a single random parameter can cause misclassification of a large number of data 

points.[White97] 

2.5.7 Genetic Algorithms 

Although genetic algorithms are not classifiers per se, they have been used 

successfully to assist in feature selection and identification of partitions in linear 

discriminant classifiers.[PMSI] Genetic algorithms are optimization techniques based on 

Darwin's theory of natural selection. In a population, the best fit individuals survive and 

reproduce, while those least fit for the environment die off. Each individual is uniquely 

defined by the set of chromosomes, which is a subset of the union of those of its parents. 

In data mining, the chromosomes are binary numbers representing the parameters (traits) 

which describe an individual. Once a population has been established, a mechanism for 

evaluating the "fitness" of each individual must be devised. This is generally known as 

the fitness function. Individuals are selected to "mate" and produce offspring based on 

this fitness function in combination with some basic probability. It is expected that over 

time the entire population will evolve to a state of higher fitness. Other operators such as 

mutation and inversion are often used to emulate the randomness experienced in nature. 

The selection/reproduction/evaluation process is repeated over several generations until 

the population has converged to a relative fitness. [Whitle94] rGoldbe89J 

In his 1989 text, Goldberg introduces a two stage GA, known as the Simple 

Genetic Algorithm (SGA). This algorithm starts with a current population. Selection is 

applied based on fitness to create an intermediate population.    This is followed by 
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recombination and mutation to create the next population. The pseudocode for 

Goldberg's original SGA is shown in Figure 4. The original version was written in 

Pascal. A version of this SGA, written in C, is used in the converted C++ GRaCCE 

algorithm. For detailed information on the SGA, the reader is referred to Goldberg's text 

[Goidbe89] and the GA tutorial from Colorado State University.[Whitle94] 

1) Randomly generate initial population 

2) Evaluate fitness of all population members 

while i <= maximum generations AND 

stopping condition != TRUE 

3) Select Individuals 

4) Perform Crossover 

5) Perform Mutation 

6) Evaluate fitness of all population members 

end while 

Figure 4: Pseudocode for Goldberg's Simple Genetic Algorithm 

2.5.8 GRaCCE 

The Genetic Rule and Classifier Construction Environment (GRaCCE) [Marmel98] 
IS 

an algorithm, developed with MatLab,[MatLab] for extracting classification rules from data. 

Developed at AFIT by Ph.D. candidate - Maj. Robert Marmelstein, it uses genetic search 

to initially select features from the data set. The fitness of each feature is based on the 

accuracy achieved against a kNN classifier.   The GRaCCE algorithm takes a set of 
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unstructured data and partitions the data into class homogenous regions such as that 

shown in Figure 5. Each of the resulting partitions represents a classification rule. The 

primary advantage of this algorithm, as compared to some of the more popular decision 

tree algorithms such as CART lBriema84] and C4.5 [Quinla93] is that it is capable of producing 

a simpler set of classification rules with approximately the same or better accuracy. The 

GRaCCE algorithm is examined in detail in the next chapter. 
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Figure 5: Data Before and After Partitioning 

2.6 Summary 

This chapter has attempted to provide the reader with a clear picture of the history 

of parallel computing that has lead to the transition from the traditional one-processor 

supercomputer to the commodity-based piles of PCs. Advantages and disadvantages of 

MPPs, NOWs, and PoPCs (Linux and NT) are discussed. Since one of the main 

objectives of this research is the evaluation of parallel communication libraries for NT, a 

Subsets of neighboring data in which the majority of the data points are from a single class. 
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considerable amount of discussion is spent on the ongoing research in this area. Lastly, 

the reader is presented with background information on data mining/classification 

techniques to include the general methods incorporated into the GRaCCE algorithm. 

This information is necessary to understand the decomposition of GRaCCE presented in 

the next chapter. 
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3     GRaCCE Algorithm Design/Decomposition 

3.1 Overview 

The first step in coming up with a parallel solution to a problem is understanding 

the problem domain, then, decomposing the problem into individual tasks and identifying 

which tasks can be executed concurrently. Next, the tasks must be mapped to an 

algorithm. Once this has been completed the algorithm must be decomposed and any 

further parallelizations identified. This chapter provides an in depth discussion in Section 

3.3 of the GRaCCE algorithm, including task decomposition, task scheduling, and load 

balancing. However, before decomposing the algorithm, the problem domain is briefly 

discussed in Section 3.2. Section 3.4 records the decisions used in parallelization of 

GRaCCE and provides the pseudocode for the final parallel code. The chapter concludes 

with a prediction of the algorithm's performance in Section 3.5 and conclusions in 

Section 3.6. 

3.2 Problem Domain 

As mentioned in Chapter 1, a decision was made to use a specific real world 

algorithm — GRaCCE, in conjunction with the Pallas benchmark suite, for evaluating the 

performance of NT and Linux clusters and the MPI tools for NT. The problem, which 

this algorithm addresses, is the extraction of accurate and understandable rules that 

define useful relationships between attributes in a database. [Marmel98] This process is 

known as data classification or data mining. Several methods for attacking this problem, 

30 



including decision tree, neural network, nearest neighbor, and linear discriminant 

algorithms, are discussed in the previous chapter. The general approach used by each of 

these methods is to separate the data into homogenous regions based on the class 

assigned to each data point. These regions are then used to define the rule set. The 

specifics of how GRaCCE accomplishes these tasks are defined in the next section. 

3.3 Algorithm Domain 

The current GRaCCE code is written in MatLab. Part of the focus of this thesis 

work is the conversion of this code to C++ and parallelization with the Message Passing 

Interface (MPI) standard. Several issues had to be addressed before this code could be 

parallelized. Most important was the issue of how to coordinate the GA-based searches 

to eliminate unnecessary work. The MatLab code as written completes each search 

sequentially. Boundary points are assigned to corresponding clusters at the end of each 

search. New searches are begun using only unclustered boundary points. Thus, in the 

serial version of the code, the majority of boundary points may never spawn a search. A 

direct assignment of each boundary point to a separate processor would cause a large 

amount of unnecessary work to be accomplished before a solution is found because 

redundant searches, which isolate identical clusters, would be run. This is illustrated in 

Figure 6. 

In this figure, a search using boundary point bl would generate the cluster 

enclosed by partitions pi to p4. Likewise, searches using boundary points b2 to b4 

would generate the same cluster. Once all of the searches are complete, the results would 
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have to be integrated and the optimum solution gleaned from the set of solutions. So, the 

direct assignment approach doesn't appear offhand to be the most efficient. 
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Figure 6: Redundant Cluster Identification 

Another possible solution to this problem is to preempt searches as new 

information becomes available from other completed searches. That is, assign all 

boundary points (or sets of boundary points if enough processors are not available) to 

individual processors, and as searches complete, use the information from these searches 

to determine which boundary point searches are unnecessary. Once determined, the 

affected boundary point search could be preempted or removed from the processing 

queue if the search has not yet begun. This of course, would require some type of 

dynamic load balancing, such as the methods described in [Yang90], to ensure that some 

processors are not idle while others have heavy queue loads. This issue is explored 

further in the sections that follow. 
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3.3.1 Data Decomposition 

At a data decomposition level, GRaCCE can be divided into the following phases: 

feature selection, partition generation, data set approximation, region identification, and 

region refinement. [Marmel98] provides a good description of each of these phases. 

These phases can be further decomposed into the following tasks: 

Tl.   GA-based feature selection - selects the best m features 
T2.   Winnowing process - remove all points misclassified by kNN classifier 
T3.   Estimate class boundaries - use estimates to create partitions 
T4.   Compute weight for each boundary point 
T5.   Select target class cot which has not yet been evaluated 
T6.   Choose unassigned boundary point with greatest weight as focus of search 
T7.   Filter out partitions not related to the class of the chosen boundary point 
T8.   Measure partition distance to the boundary point 
T9.   Sort partitions on distance from boundary point 
T10. Orient partitions such that boundary point, b, has a positive value 
Tl 1. Find initial solution using a greedy search technique 
T12. Initialize GA population with results from greedy search 
T13. Perform GA-based search 
T14. Assign boundary points within best region found 
T15. Filter out disproportionately small regions 
T16. Test and remove extraneous boundaries 
T17. Recompute the covariance matrix of each region 

Tasks T6 to T14 are repeated for the remaining boundary points in target class (Ot. 

Once all boundary points in (Ot have been evaluated, tasks T5 to T14 are repeated for all 

remaining classes. This decomposition of tasks is graphically illustrated in Figure 5. 

Repeat for all boundary points in class 

Repeat for all remaining classes 

Figure 7: Data Decomposition of GRaCCE Algorithm 
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The region identification phase (T5-T14) is the best candidate for parallelization 

since each of the class evaluations are independent and all candidate partitions are known 

a priori. A proposed parallel decomposition of the above tasks is illustrated in Figure 8. 

This figure shows both the decomposition of searches for clusters of points belonging to a 

particular class and the separate searches associated with different classes. 

Figure 8: Parallel Data Decomposition of GRaCCE Algorithm 

Further parallelization may be possible, by decomposing the GA-based search. 

The decomposition of tasks is as follows: 

T12. Initialize GA population 
T13a. Mutate population 
T13b. Evaluate fitness of population 
T13c. Assign fitness 
T13d. Select individual for breeding 
T13e. Recombine individuals 
T13f. Mutate individuals 
T13g. Evaluate offspring 
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T13h. Reinsert offspring into population 

In this decomposition, tasks T13c to T13h are repeated as long as there is 

improvement in the population as compared to the results of the previous greedy search. 

If we parallelize this loop, we get the decomposition as illustrated in Figure 9. This level 

of decomposition would not yield significant improvements in overall performance. In 

reality, it may actually degrade the performance since the amount of interprocessor 

communication would increase by a factor of G/n, where G is the number of generations 

for each GA search and n is the number of processors. 

Figure 9: Parallel decomposition ofGA-based search 

3.3.2 Task Decomposition 

As has been mentioned previously, the current code for the GRaCCE is written in 

MatLab. To limit the scope of this research to a feasible problem size, the conversion of 

the current code to the C++ programming language and subsequent parallelization is 

limited to the region identification section of the algorithm (i.e. tasks T5-T14). This 

section of the code accounts for approximately 90% of the application's execution time 
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and offers the highest probability for improving the overall performance. The winnowed 

data set, list of generated partitions, boundary points and calculated boundary point 

weights used in the region identification phase are provided by the original GRaCCE 

algorithm. A preliminary review of the code for a serial conversion to C++ yields the 

pseudocode shown in Figure 10. This pseudocode is used in the decomposition of the 

algorithm that follows. It is noted that this pseudocode is not a complete algorithmic 

decomposition of the MatLab code. A complete decomposition is not necessary to 

discuss task distribution and load balancing. 
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Program cGRaCCE 
Begin 
Getjiata (); /* load data from output files 

For target_class = classmin to classmax /* loop through all classes 
Get_target_class_data (); /* load data for this target class 
While (unclusteredjbpts > 0) /* loop until all tc bpts have been clustered 

Curr_bpt = Max (bpt_set); /* select bpt with the greatest weight 

For count = 1 to num_bnds /* loop through partition set 
If (partition IN target_class) 

Add partition to boundary subset; /* filter out unrelated partitions 
Compute Distance; /* measure distances to partitions 

End If 
End For 
Sort Distance_Array; /* sort partitions on distance from bpt 
For counter = 1 to ringer_size /* greedy search 

Initialize ringer[counter]; 
Calculate Value; 
Compare with Ringer Score; 
Assign Ringer Value & Score; 

End For 
If Ringer Score < Search Threshhold 

Initialize GA population; /* initialize with greedy algorithm results 
Mutate population; 
Evaluate fitness; 

End If 
While (Generations < Min_Gen) /* perform GA search 

Assign fitness; 
Select individuals for breeding; 
Recombine & Mutate individuals; 
Evaluate & Reinsert offspring; 
Update Score; 
Break if no improvement; 

End While 
If (GA_Sol > RingerScore) /* Use best results of two searches 

Use GA results; 
Else 

Use Greedy Search results; 
End If 

Simplify Region (); /*remove unnecessary partitions 
AssignJBpts (); /* assign appropriate bpts to cluster 
Update BptsQ; /* rebuild bpt list from original data set 

End While /* all tc bpts have been evaluated 
End For /* all classes have been evaluated 

End Program; 

Figure 10: Pseudocode for Serial GRaCCE algorithm 

The primary control structures in the cGRaCCE pseudocode are the first "For" 

and "While" loops. The first "For" loop iterates through the set of classes for a data set. 
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Tests with various ordering of class evaluations have shown that the particular order 

doesn't affect performance or accuracy. This is understandable since class evaluations 

are independent with the exception of assigning higher priorities to previously used 

partitions. This exception does not affect accuracy or performance, but contributes to 

reducing the final rule set. Thus, for the serial algorithm, the classes are evaluated in the 

order in which they are read from the data structure. This ordering may become 

significant in the parallel version of the code, as the number of boundary points in each 

cluster affects the load balance on each processor. This of course, is only a factor if the 

tasks are allocated to processors based on class. 

The "While" loop iterates through the boundary points within a cluster. Unlike 

class ordering, the order of the boundary point evaluations does effect performance 

and/or accuracy, even in the serial algorithm. By evaluating boundary points with the 

greatest weights first, other boundary points should be clustered more rapidly, 

eliminating the need for redundant evaluations of boundary points enclosed by the same 

partitions. For the parallel version, this brings us back to the problem of redundant 

cluster identification, discussed in the last section, and illustrated in Figure 6. 

The other major sections of this pseudocode include the greedy search, GA 

search, and cluster refinement. These basically follow the previously discussed data 

decomposition. Although there are calculations, which are performed in the various 

sections of the algorithm, these calculations are trivial when compared with the data 

decomposition and potential communication costs. That is, an attempt to decompose this 
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algorithm based on the lower level calculations significantly increases the amount of 

communication necessary between processors. Thus, this particular decomposition of the 

algorithm doesn't actually reveal a significant difference in an algorithmic decomposition 

as compared to the data decomposition, and so, we shall focus on the tasks previously 

identified. 

Since it is evident from the serial pseudocode that the primary task decomposition 

for the parallel code remains the same, the parallel pseudocode can be written as shown 

in Figure 11. The two main loops are replaced with assignments of the tasks using a 

breakdown by class, boundary point, or a hybrid of the two, to available processors. 

Program Parallel-GRaCCE 
Begin 
Get_data (); /* load data from files output by MATLAB GRaCCE 

algorithm 
Broadcast_data (); /* distribute to appropriate processors 
Assign_processor; /* assign each class/boundary point to a processor 

Execute Code /* execute code used by serial algorithm on each processor 

Gather_data; /* gather data from each processor and analyze results 
Output results;       /* print solution to screen 

Figure 11: Pseudocode for Parallel GRaCCE algorithm 

3.3.3 Task Scheduling 

Task scheduling for this algorithm depends on how the problem of the GA-search 

coordination is handled. As was mentioned previously, we could allow preemption of a 
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task if a previously completed search has nullified the need for the current or scheduled 

task. If tasks are scheduled by boundary points, this could lead to a large increase in 

communication costs. If scheduled by class, then the communication requirements would 

be very low, but since the number of classes is normally much less than the total number 

of boundary points, this might significantly reduce the overall scalability of the 

algorithm. Each of these options is discussed in the sections that follow. 

3.3.3.1 Scheduling by Class 

If the boundary point evaluations for a particular class are all allocated to the 

same processor, then the results from each evaluation can be used to eliminate 

unnecessary boundary point evaluations without significantly increasing communication 

costs. There is, however, some increase in communication, as the partitions, which have 

been selected for a cluster, are given a higher priority for use in other cluster/class 

evaluations. This information must be shared with all other processes where the partition 

may be evaluated for use in bounding a cluster. Thus, there has to be some type of all-to- 

all broadcast, based on the inclusion of a partition in a particular class or boundary point 

partition set. 

The major drawback with scheduling by class is the limit on scalability imposed 

by this approach. For instance, if a particular data set is composed of four classes of data 

with an average of sixteen boundary points per class, we could only use a maximum of 

four processors. By scheduling the same data set according to boundary points, we could 

possibly use up to sixty-four processors. 
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3.3.3.2 Scheduling by Boundary Point 

When scheduling by boundary point, all boundary points belonging to the same 

class should be allocated to neighboring processors if possible to reduce communication 

costs. For instance, if we wish to schedule the tasks, listed in Table 2 below, onto the 

hypercube in Figure 11, we might end up with the scheduling shown in Table 3. As you 

can see, by trying to reduce communication, we may end up with a load imbalance 

among the processors. Thus, we must also, consider the ratio of computation cost to 

communication cost when developing a scheduling method. 

Class 

CO 

g 
'o 

C 
3 
O 
PQ 

0)1 0)2 0)3 0)4 
Tl T7 T14 T18 
T2 T8 T15 T19 
T3 T9 T16 T20 
T4 T10 T17 T21 
T5 Til 
T6 T12 

T13 

Table 2: Tasks (boundary points) Figure 12: Processors in a Hypercube 

Processor 

M 
CO 

P0 PI P2 P3 P4 P5 P6 P7 
Tl T4 T7 T10 T14 T16 T18 T20 
T2 T5 T8 Til T15 T17 T19 T21 
T3 T6 T9 T12 

T13 

Table 3: Scheduled Tasks for Hypercube 
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3.3.4 Load Balancing 

As with task scheduling, load balancing also depends on the method of search 

coordination. It was illustrated in Table 3 that scheduling by boundary point with 

communication costs as the deciding factor could lead to a load imbalance. One possible 

method of avoiding this problem would be to use the duplication-scheduling heuristic 

(DSH) outlined in [El-Rew94]. Table 4 shows how tasks might be scheduled using DSH. 

Task T13 is duplicated to processors 6 and 7, which are neighbors of processors 2 and 4, 

respectively. Thus all of the tasks (boundary points) in class 2 now have access via 

neighboring processors to data produced by intra-class boundary points. This example 

does not follow the strict definition of DSH, which refers to duplicating a task on the 

processor (not neighbor) where the data is needed, but the same principle applies. 

Processor 

PO PI P2 P3 P4 P5 P6 P7 
Tl T4 T7 T10 T14 T16 T18 T20 
T2 T5 T8 Til T15 T17 T19 T21 
T3 T6 T9 T12 T13 T13 T13 

Table 4: Scheduling using Duplication 

One factor of scheduling by boundary point that was ignored in the above 

example was the fact that the boundary points within a particular class are evaluated 

based on their weight. To achieve this objective, it is necessary to use some type of list 

scheduling technique that schedules tasks based on a priority scheme. One such method 

is the Heavy Node First (HNF) technique outlined in [Sharaz95]. This technique 

basically assigns a weight to each task at each level.   The heaviest nodes (tasks) are 
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assigned to processors with the smallest accumulated execution time. The 

communication delay can also be factored into the decision of on which processor a task 

should be placed. 

Both of these methods, DSH and HNF, are static list scheduling techniques. They 

don't address the issue of how to dynamically remove tasks that are no longer necessary 

or how to dynamically redistribute the load after previously scheduled tasks have been 

removed from a processor's queue. The first issue can't be directly handled by any of the 

generic dynamic scheduling schemes. It requires that some type of additional processing 

occur that decides based on data from completed tasks which tasks should be removed 

from the appropriate queues. This processing could be done on a central (i.e. supervisor) 

processor that would analyze the data broadcast by each processor, remove the 

appropriate tasks, and redistribute the workloads. This, however, would incur a high 

communication cost. A better method might be to let each processor analyze its own data 

and report to the supervisor the tasks that need to be removed. Since, this list of null 

tasks normally resides on the same or neighboring processor as the processor which is 

reporting the list, it may still be better to just allow the processor to remove the null tasks 

and only report their individual queue lengths to the supervisor. If this technique proves 

to be efficient, then it may be beneficial to take it one step further by instead using either 

the "LOWEST" or "THRHLD" algorithms discussed in [Yang90]. These algorithms 

should reduce communication costs even further while maintaining a better balance of 

workloads. 
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3.4 Parallel GRaCCE (cGRaCCE) Algorithm 

After careful consideration of all factors involved, a decision was made to 

parallelize the outer loop of the GRaCCE algorithm (refer to Figure 10). That is, each 

processor is assigned a class or set of classes (if the number of processors is smaller than 

the number of classes) to evaluate for CH regions. The primary reasons for this decision 

are 1) low communication required, 2) more compatible with the size of clusters used in 

this research (maximum of 12 processors for ABC and 6 for AFIT NOW), and 3) less 

complex static scheduling scheme could be used. The pseudocode for the final parallel 

algorithm is shown in Figure 13. This pseudocode also shows the timings taken to 

compute the computation and communication ratios. 

Program cGRaCCE 
Begin 
Initialize MPI 
Record time (Tl) /* use MPI_Wtime to record starting time 
Get_data (); /* load data from files output by MATLAB GRaCCE 

algorithm 
Broadcast_data (); /* distribute to all processors 
Record time (T2) /* used to determine I/O & communication overhead 
Assign_processor ; /* assign class(es) to all processors 

Execute Code /* execute code used by serial algorithm on each processor 

Record time (T3) /* used to determine actual computation time 
Gather_data; /* gather data from each processor and analyze results 
Record time (T4) /* used to determine total execution time 
Output results; /* print solution to screen 

Figure 13: Pseudocode for final cGRaCCE code 
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3.5 Predicted Performance 

The MatLab version of GRaCCE can execute in a matter of seconds on very small 

data sets; however, it can take more than a day to complete when using relatively large 

data sets. As mentioned previously, the rule set generally produced by GRaCCE is much 

simpler than that of CART or C4.5 and the accuracy is essentially equivalent. The 

performance (i.e. speed), on the other hand, is much slower than the competing 

algorithms. This is the primary driving factor behind converting and parallelizing the 

existing code. Since each class evaluation is essentially independent, one would expect 

an almost linear speedup. However, as shown in Chapter 5, this is not the case. The 

amount of work required to isolate all of the clusters for a particular class varies, thus, 

leading to load imbalances among the processors. In addition, the effects of caching and 

communication overhead contribute to a sublinear speedup. 

3.6 Summary 

This chapter has briefly touched on some issues concerning the data/task 

decomposition of the GRaCCE algorithm, as well as, issues concerning task scheduling 

and load balancing of this decomposition. Also, discussed are decisions that influenced 

the final parallel C++ algorithm. The next chapter presents the metrics and methodology 

used to analyze the performance of this algorithm, as well as, the performance of the NT 

and Linux clusters and MPI tools for NT. 

45 



4     Methodology and Design of Experiments 

This chapter describes the tools and techniques used to evaluate the performance 

of ABC, the parallel GRaCCE algorithm, and the various MPI tools for NT. It begins 

with a general discussion of performance metrics for parallel systems in Section 4.1. 

Section 4.2 provides a description of the design for each of the three experiments used to 

analyze the aforementioned performance. The chapter concludes with a description of 

the statistical technique used to validate the results of these experiments. 

4.1 Measuring Performance 

Unlike serial algorithms, a parallel application can't be evaluated simple in terms 

of its execution time and input size. One must also take into consideration the number of 

processors used and the architecture of the parallel system. The combination of an 

algorithm and the parallel architecture on which it is implemented is known as a parallel 

system.[Kumar941 In comparison to serial programming, parallel programming is still a 

rather new field. Many of the tools/techniques for parallelization are still under 

development and are not always dependable. The MPI standard has helped to alleviate 

some of these problems, but it is still not uncommon for the development of an efficient 

parallel algorithm for a specific problem to take years. 

Once a parallel algorithm has been developed, it must be tested using metrics that 

evaluate the degree to which parallelization has been reached. The most common metric 

is the parallel run time. Often abbreviated Tp, this is the time that elapses from the start 
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of the program until the last process finishes. This metric is compared to the run time 

(Ts) of the fastest serial algorithm for the same problem to determine the speedup, 

efficiency, and isoefficiency of the parallel algorithm. These three metrics are discussed 

in the sections that follow. 

4.1.1 Speedup 

There is some ambiguity over the question of what is speedup. Most authors, 

however, agree on the following definition: speedup (S) is "the ratio of the run time of 

the fastest known serial program on one processor of the parallel system to that of the 

parallel program running on p processors of the parallel system."[Paohec97] 

Serial.run..time      Ts 
opeedup = =  Equation 2: Speedup 

Parallel..run..time    Tp 

This metric basically gives us an idea of how much performance was gained by 

parallelizing a particular algorithm. In theory, a program that runs in time T on a single 

processor could run in time T/p on p processors (i.e. p times faster). This is known as 

linear speedup.[Kumar94] In practice, however, the speedup is usually sublinear primarily 

due to the added communication overhead required to distribute the program to multiple 

processors and because programs normally contain sections of code which are inherently 

sequential and cannot be parallelized. 

If the observed speedup is greater than p, known as superlinear speedup, this 

normally indicates that the serial algorithm used was not the fastest or, perhaps, that a 
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greater portion of the problem domain fits within cache memory and does not have to be 

swapped to and from the hard disk. A stochastic search algorithm may also report 

superlinear speedup since the probability that a search reaches a solution in a fixed 

amount of time is greater when multiple paths are taken in the search. One can argue, 

however, that this again is not superlinear since a serial algorithm could be written to 

begin the search along the same path. This phenomenon of superlinear speedup was 

observed for certain trials of the parallel GRaCCE algorithm. The contributing factors 

are discussed in Section 5.4.2. Speedup alone doesn't provide an accurate picture of a 

parallel algorithm's performance. A look at an algorithm's efficiency is also necessary to 

complete the picture. 

4.1.2 Efficiency 

Although a parallel program may continue to experience an increase in speedup as 

the number of processors upon which it is run increases, the amount of this speedup 

eventually tapers off. This results from the fact that processors can not devote 100 

percent of their time to computation, but must allot time to operating system tasks as well 

as communication requirements. Efficiency measures the benefit of adding more 

processors and is defined as the ratio of the speedup to the number of processors.[Kumar94] 

~~~ .       ,„.        Speedup        S      T 
Efficiency(E) = = — = —— Equation 3: Efficiency 

# processors    p    pT 

Since, the speedup, in theory, can't exceed p, the efficiency, in theory can never 

exceed one. An algorithm is generally considered scalable if a fixed efficiency can be 

maintained as the number of processors is increased and the problem size is also 
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increased. The rate at which the problem size must be increased to maintain a fixed 

efficiency varies among different parallel systems and determines the degree of 

scalability for that system. This rate is defined by the isoefficiency function.[Kumar94] 

4.1.3 Isoefficiency 

The isoefficiency function given in Equation 4 is simply a measure of the rate at 

which the workload W (i.e. problem size) must be increased for a particular system to 

maintain a fixed ("iso") efficiency. This function is dependent upon the overhead (To) 

incurred as a result of the parallelization. Scalable systems have small isoefficiency 

functions since the workload only has to be increased at a relatively slow rate to maintain 

a fixed efficiency. If a fixed efficiency can not be maintained no matter how fast the 

problem size is increased on a particular system, then that system is unscalable.[Kumar94] 

W = T0(W,p) Equation4: Isoefficiency 
\-E 

4.2   Experiments and Benchmarks 

In the article "Experimental Models for Validating Technology", the authors state 

that approximately 40 to 50 percent of the more than 600 published software engineering 

papers they reviewed contained no validations of the claims that were made. [Zelkow98] 

This thesis research makes no preliminary hypothesis on the outcome of the analysis 

included in this research; however, all resulting assertions have been backed up with 
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experimental validation through statistical analysis of the collected test data.   As was 

noted in Chapter 1, the three primary objectives of this research are to: 

4) Compare the performance of an NT PoPC with that of a Linux PoPC. 

5) Compare the performance of the various MPI implementations for NT (MPIIPro & 
PaTENTMPI). 

6) Analyze the performance of a parallel C++ version of the GRaCCE algorithm. 

To meet these objectives, a series of three experiments are performed. Since one 

of the primary goals of experiment design is reproducibility, [Barr95] all of the parameters 

used in these experiments are outlined in the sections that follow. Detailed information 

on the configuration of all hardware and software used in these experiments is also 

provided. 

4.2.1 ABC-Linux vs. ABC-NT 

To analyze the overall performance of a parallel system, one needs to test the 

system with a variety of algorithms which are representative of the applications normally 

run on these systems. This, of course, is no small undertaking, as source code must be 

located, compiled, and tested for many types of parallel problems. A better approach is 

to run a benchmark suite that tests the parallel functions, which are most often used by 

these algorithms. The Pallas MPI Benchmarks (PMB)[Pallas] provides this functionality. 

The objectives of the PMB suite, as outlined in the accompanying User's Guide, are: 

• Provide a concise set of benchmarks targeted at measuring the most important 

MPI functions. 

• Set forth a precise benchmark methodology. 
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•   Don't impose much of an interpretation on the measured results: report bare 

timings instead. Show throughput values, if and only if these are well defined. 

This software is free and can be downloaded from the web at [Pallas]. This code 

has been loaded on ABC and compiled under NT using the MPI/Pro and PaTENT MPI 

libraries. It has also been compiled under Linux using the standard MPICH 1.1 library. 

4.2.2 Benchmarking MPI Tools 

The major advantage of using the PMB suite for evaluating the performance of 

the NT and Linux cluster is that it also allows evaluation of the MPI implementations for 

NT using the same collected data. Hence, no additional experiments were necessary to 

accomplish the second objective of this research. 

4.2.3 Parallel GRaCCE Performance 

In order to accurately analyze any performance improvement gained by 

parallelization of the GRaCCE algorithm, it is necessary to test the new algorithm on a 

number of data sets varying in the following characteristics: size of data set, number of 

classes, number of boundary points, and feature size (dimensionality). The parameters 

used for each test are outlined in Table 5. 
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Data Set Class Dim Data lincl linds Procs Gens Iterations 1 Total 
Name Points Points trial Iterations 
Checker 2 2 1000 105 66 1,2 10,100, 

1000 
30 180 

TH513 5 2 799 61 48 1,2,3,4 
,5 

10,100, 
1000 

30 450 

Glass 4 4 97 23 25 1,2,3,4 10,100, 
1000 

30 360 

Cancer 2 9 523 17 11 1,2 10,100, 
1000 

30 180 

Wine 3 3 130 21 17 1,2,3 10,100, 
1000 

30 270 

Table 5: Parameters for Experiment III 

All of the trials in Table 5 were repeated on ABC under NT and Linux using a 

variety of MPI tools, on the AFIT NOW, and on the MSRC's IBM SP2. The MPI 

software used on these systems is as follows: MPI/Pro 1.2.3 and PaTENT MPI 4.09 on 

NT, MPICH 1.1.0 on Linux, MPICH 1.0.13 for Myrinet on the AFIT NOW, a proprietary 

implementation of MPI on the SP2. The best results from the all trials were used to 

evaluate the performance of the parallel GRaCCE algorithm. These trials were also used 

to compare the performance of a real world application with that of the Pallas 

benchmarks using the same MPI implementations. 

4.3 Statistical Validation 

Analysis of experimental results without statistical validation of the collected data 

can lead to inaccurate conclusions based on faulty data. There are a number of methods 

for validating results, such as the tests of means, tests of variances, Bernoulli tests, Chi- 

Square tests, Empirical Distribution Function (EDF) tests, and the Analysis of Variance 

(ANOVA) tests. The method used in this research effort is the ANOVA test. One of the 

primary reasons for choosing this method is that it accomplishes the main goal of 
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validating the experimental data, it is available in most standard spreadsheet applications, 

and the results are conclusive and easy to interpret. Microsoft Excel, which was used to 

create the performance charts for the analysis of cGRaCCE, provides the built-in 

ANOVA function that is used. 

Since the ANOVA method assumes a normal distribution of data, a generally 

accepted "large" sample size of 30 trials [Allen90] is used to approximate a normal 

distribution. The ANOVA test is only applied to the analysis of the parallel GRaCCE 

performance. Statistical validation of the Pallas benchmark suite would have been 

redundant and is not necessary. For validation of the collected data, a 95% confidence 

interval (C.I.) is used. This is a commonly used C.I. for this type of experiment and is 

sufficient since the collected data is only used to provide close approximations of the 

speedup and efficiency of the parallel version of GRaCCE. These approximations are 

sufficient for determining the performance gain and scalability of the algorithm. 

53 



5     Analysis of Results 

5.1 Overview 

This chapter presents a detailed analysis of data collected from the experiments 

discussed in Section 4.2. This analysis is accomplished with regard to the three main 

objectives of this research, as presented in Chapter 1. The results of experiments with the 

Pallas MPI Benchmark suite and with the parallel/concurrent GRaCCE algorithm, 

referred to as cGRaCCE, are used in Section 5.2 to compare the performance of Linux 

and NT PoPCs. Using the same data, a comparison of the two primary MPI tools for NT 

clusters, MPI/Pro and PaTENT MPI, is accomplished in Section 5.3. An analysis of the 

performance of the parallel cGRaCCE algorithm concludes the chapter. 

5.2 Linux Cluster vs. NT Cluster 

This section compares the performance of the NT and Linux clusters. To 

maintain homogeneity and thereby reduce the complexity of this analysis, only the six 

Dell 400 MHz PCs in the ABC cluster are used. This comparison is based on an analysis 

of the data produced by the Pallas MPI benchmark suite. The results from the best runs 

of the cGRaCCE algorithm are also used to compare the results of a real world 

application with those predicted by the benchmarks. 

Although the primary focus of this section is an analysis of the performance of 

NT and Linux clusters, comparisons are also made with data collected from similar 

experiments on the AFIT NOW and the MSRC's IBM SP2. It is noted, however, that the 
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latter comparison is not intended to provide conclusive results about the performance of 

PoPCs versus NOWs versus MPPs in general. That type of comparison is beyond the 

scope of this research; however, a price-performance comparison of the specific 

platforms used in this research is performed. 

The remainder of this section is divided up as follows. Section 5.2.1 details the 

factors that contribute to the general performance of each of the tested parallel platforms. 

In Section 5.2.2, optimizations for each of the different compilers used in this research 

are discussed. The results of trials with the Pallas benchmark are analyzed in Section 

5.2.3. Section 5.2.4 compares the run time performance of cGRaCCE on each of the 

platforms. The following section provides a price-performance comparison of the ABC, 

AFIT NOW, and IBM SP2. In the final section, conclusions about the performance of 

Linux/NT PoPCs, NOWs, and MPPs are presented. 

5.2.1 Factors Affecting System Performance 

The primary factors affecting the performance of each of the systems tested 

include the processor speed and performance, memory size and speed, compiler 

optimizations, and ICN throughput and latency. A good indicator of processor 

performance is given by the Standard Performance Evaluation Corporation's (SPEC) 

CPU benchmarks. [SPEC] This benchmark suite includes a numerical rating of processor 

performance based on floating point operations (SPECfp95) and integer operations 

(SPECint95). 
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Compiler optimizations are discussed in Section 5.2.2. The remaining parameters 

are listed in Table 6. The SPEC benchmark rating is given as the ratio of the execution 

time of a processor to that of a reference machine. [SPEC] Thus, a higher number for the 

SPEC benchmarks indicates greater performance. One interesting parameter to note in 

Table 6 is the SPECfp95 rating for the SP2. Although the clock speed for the SP2's 

P2SC processor is approximately one-third that of the ABC's Pentium II processor, this 

benchmark indicates a 40% advantage in performance for floating point operations on the 

SP2. This higher rating is a due to the powerful pipelined floating point units in the 

P2SC processor, which are capable of executing up to four floating point operations per 

clock cycle. [IBMSP2] This provides the SP2 with a significant advantage for applications, 

which contain a large number of independent floating point operations. 

Processor SPEC SPEC In stritetio nIData Level 2 RAM ICN 
fp9S int<)5 Cache Size (KB) Cache 

(MBIns) 
(MBIns) Speed 

(Mhps) 
Dell 400 MHz Pentium 
II (ABC) 
Sun 167 MHz 
UltraSPARC (NOW) 
IBM135MHzP2SC 
(SP2)  

12.4 15.3 

9.06 6.26 

17.6       6.17 

16/16 

16/16 

32/128 

512 128/10 200 

512 128/60        2560 

None       1024/70        800 

Table 6: System Parameters for ABC, NOW, and SP2 
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5.2.2 Compiler Optimizations 

The C compilers used on each of the test systems for cGRaCCE are listed in 

Table 7. 

Parallel System Operating System Compiler Optimization Used 

ABC-NT Windows NT 4.0 MS Visual C++ v. 6.0 "Maximize speed" 
ABC-Linux Linux 2.0.33 GNU g++ 2.7.2.3 03 
AFITNOW Solaris 5.5.1 GNU g++ 2.7.2 03 
IBMSP2 AIX4.1 IBM AIX xlC 03 

Table 7: C++ Compilers and Optimizations used 

It was originally decided that the default optimizations for each compiler would 

be used. This proved to be a bad decision for the following reasons: 1) the default for 

MSVC++ is "maximum" optimization for speed and 2) the default for g++ [GNUGCC] and 

xlC is no optimization. This significantly impacts the performance of cGRaCCE on the 

platforms using g++ and xlC and makes it difficult to make a fair comparison between 

the NT cluster where the code was optimized and the other systems. Subsequently, it was 

decided to use the maximum optimization for each system. Figure 14 shows the 

performance difference between the unoptimized and fully optimized versions of 

cGRaCCE on the SP2, AFIT NOW, and Linux ABC cluster. 
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Figure 14: Effects of Compiler Optimizations on cGRaCCE Performance 

As the chart shows, the performance more than doubles when the maximum 

compiler optimization is used. This increase can be attributed to the large number of 

optimizations used by modern compilers.   For instance, the GNU g++, used by ABC- 

Linux and the AFIT NOW, uses the following optimizations: [GNUGCC] 

Automatic register allocation 

Common sub-expression elimination (CSE) 

Invariant code motion from loops 

Induction variable optimizations 

Constant propagation and copy propagation 

Delayed popping of function call arguments 

Tail recursion elimination 

Integration of in-line functions & frame pointer elimination 

Instruction scheduling 

Loop unrolling 

Filling of delay slots 

Leaf function optimization 
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• Optimized multiplication by constants 

• The ability to assign attributes to instructions 

• Many local optimizations automatically deduced from the machine description 

5.2.3 Pallas MPI Benchmarks (PMB) 

As was mentioned in 4.2.1, the PMB suite measures the performance of the most 

important MPI functions. It does this by measuring the latency of each function and the 

throughput for specific functions. The suite consists of eleven benchmarks as follows: 1) 

PingPong, 2) PingPing, 3) Sendrecv, 4) Exchange, 5) Allreduce, 6) Reduce, 7) 

Reduce_scatter, 8) Allgather, 9) Allgatherv, 10) Beast, and 11) Barrier. These 

benchmarks are divided into the following three categories: single transfer, parallel 

transfer, and collective functions. It is not necessary to evaluate all of these benchmarks, 

as many provide redundant information. Therefore, in this section, we concentrate on 

three of the benchmarks, one from each of the three primary categories. The three 

evaluated are PingPong, Sendrecv, and Beast. These benchmarks are well representative 

of the MPI constructs used in cGRaCCE, which only uses the MPI_Send, MPI_Recv, and 

MPI_Bcast functions for sharing data. 

Given the information that was presented earlier in Table 6, one could make 

certain predictions about the expected performance of the four systems tested with PMB. 

One such prediction might be that the AFIT NOW would produce the greatest throughput 

since its maximum theoretical throughput is three to twelve times greater than that of the 

other parallel platforms. Of course, as is shown in the sections that follow, theoretical 

performance is not always a good measure of the true capabilities of a parallel system. 
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5.2.3.1 PingPong 

The PingPong benchmark measures the startup and throughput of a single 

message in a network. It does this by sending a message back and forth between two 

processors and measuring the elapsed time (At). The startup time (ts) is then reported as 

At/2 jisecs. Using the message size (X), the channel throughput (p) for PingPong is 

calculated as follows: 

P = X 11.048576 / ts Equation 5: PingPong Channel Throughput 

Both of these parameters are used in the sections that follow to analyze the 

performance of ABC-Linux, ABC-NT, the AFIT NOW, and the MSRC's IBM SP2. 

5.2.3.1.1 Startup Time 

The startup times for each of the parallel platforms in this experiment are shown 

in Figure 15. All of the Pallas benchmarks use message sizes ranging from zero bytes to 

four MB. Since there was no appreciable change in startup times from zero to 256 bytes 

for this experiment, the values for message sizes less than 256 bytes are not shown in this 

chart to enhance its readability. 
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Figure 15: Message Startup Time on ABC, AFITNOW, and SP2 

From this chart, we can see that the SP2 clearly has the lowest startup time 

throughout the range of message sizes. The differences in startup time for the other 

platforms is close, with ABC leading the AFIT NOW initially for a 256 byte message 

size. These differences disappear as the message size increases to 4MB. The erratic 

behavior of the ABC-Linux platform as the message size changes from 4K to 64K bytes 

is caused by a problem with the TCP/IP stack on the Linux kernel used in these 

experiments.[NIST] This problem is discussed in more detail in the next section. 

Since the primary focus of this section is a comparison of the NT and Linux 

cluster, a closer look at the experimental results is necessary. Figure 16 shows the startup 

times for the two clusters as the message size increases from 256 to 4096 bytes, the point 

at which the erratic behavior of Linux begins. This range of message sizes is fairly 

representative of the majority of messages sent by the cGRaCCE algorithm. The results 

61 



indicate that the Linux cluster has a slightly lower startup time for messages than the NT 

cluster which leads to a higher throughput as shown in the next section. 

PingPong Benchmarks 
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Figure 16: Startup Time for Linux and NT cluster 

5.2.3.1.2 Channel Throughput 

Figure 17 shows the measured channel throughput for each of the parallel 

platforms. As with the startup times, the change in throughput for message sizes between 

zero and 256KB is negligible and is not shown. 

PingPong Benchmarks 

Message Size (Bytes) 

ABC-NT (MPI-Pro) - ABC-Linux -x- NOW -*— SP2 

Figure 17: Channel Throughput - PingPong Benchmark 
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Once again, the SP2 outperforms the other platforms by a significant margin. As 

was mentioned at the beginning of Section 5.2.3, theoretically the AFIT NOW would be 

expected to have a much higher throughput than the SP2. This obviously is not the case 

and the reasons for this lack of performance can be found in [Gindha97]. Gindhardt 

explains how the network interface on the AFIT NOW's workstations is connected to the 

I/O bus, known as the SBus. This bus has an effective throughput of 23.9 MBps and thus 

becomes a bottleneck for the NIC. Gindhardt also points out the inefficiencies in using 

TCP/IP as the messaging layer for Myrinet. The latency with TCP/IP is at least an order 

of magnitude higher than with other "leaner" messaging layers such as Illinois Fast 

Messages (FM),[Pakin95] Berkeley Active Messages (AM),[vonEic92] and MSU's Bulldog 

Messages (BDM).[Henley97] 

The same erratic behavior discovered in the startup time for the Linux cluster was 

again demonstrated in the throughput performance for messages ranging from 4KB to 

64KB. This behavior is the result of a bug in the TCP stack for Linux kernels older than 

version 2.1.100. A full description of the bug, which is caused by delayed 

acknowledgements of partial packets, can be found at [NIST], along with a recommended 

solution. At the time of this writing, the fix had not yet been applied to the ABC-Linux 

cluster. 

For an accurate analysis of the differences in performance of the Linux and NT 

clusters, it is once again necessary to take a closer look at the results of the experiment. 
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Figure 18 shows a more detailed chart of the throughput for the NT and Linux clusters. 

The TCP bug with Linux makes it difficult to compare the two systems; however, it does 

appear that for message sizes of 4K and below, Linux produces a slightly higher 

throughput. This comparison is analyzed further in the next section. 
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Figure 18: Channel Throughput for ABC-NT and ABC-Linux 

5.2.3.2 Sendrecv 

The Sendrecv benchmark, as the name implies, tests the performance of the 

MPI_Sendrecv function on a parallel system. This is a blocking function and is basically 

a concatenation of the MPI_Send and MPI_Recv functions. The Sendrecv benchmark 

organizes the processes into a periodic communication chain in which each node sends to 

the right and receives from the left neighbor in the chain.[Pallas] Since a particular process 

sends and receives X bytes in time At, the throughput is calculated as: 

p = 2XI 1.048576 I At Equation 6: Throughput - Sendrecv 
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The chart in Figure 19 again shows the SP2 outperforming the other systems by a 

significant margin. The AFIT NOW performed very poorly on this benchmark, which 

shows that high bandwidth is not necessarily effective without a corresponding low 

latency. The ABC-NT performed better than expected, outperforming the ABC-Linux 

cluster and the AFIT NOW for most message sizes. 

Sendrecv Benchmark - Throughput 

256   512     1k     2k     4k     8k    16k   32k   64k  128k 256k 

Message Size (Bytes) 

-»— ABC-NT (MR-Pro)    *    ABC-Linux ■NOW SP2 

Figure 19: Measured throughput for Sendrecv Benchmark 

5.2.3.3 Beast 

This benchmark measures the performance of the MPI_Bcast function. This 

function is used in cGRaCCE to distribute all of the data read in from the data files to 

each of the participating processors. The Beast benchmark does not return a throughput 

value for MPI_Bcast - only bare timings are reported. A root process, which is changed 

cyclically, broadcasts an X byte message to each of the other processes. The results for 

this benchmark are shown in Figure 20. 
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Figure 20: Timing for Beast benchmark 

Again, it is no surprise that the SP2 outperforms the other platforms; however, the 

performance of ABC-NT to that of ABC-Linux and the AFIT NOW is surprising. It 

appears from these results that the negative effects of both ~ the TCP bug in Linux and 

the high TCP/IP latency on the AFIT NOW's Myrinet network — are compounded by 

message broadcasts. In the next section, we show how these results and those previously 

discussed affect the performance of a real world application on these platforms. 

5.2.4 Run Time Performance ofcGRaCCE 

As was mentioned in Section 4.1, the run time of a parallel algorithm is the time 

that elapses from the moment that a parallel program begins execution to the last 

processor finishes executing. For comparing computing platforms, run time is the best 

metric, since the time required to finish executing a program is normally the most visible 

and important parameter to the end user. In this section, we analyze the run time of 

cGRaCCE on each of the parallel systems using the TH513 and checker data sets. These 

results are representative of those observed with the other three data sets. 
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Before presenting the results, it is necessary to provide more info on the TH513 

and checker data sets and a brief summary of what we've found thus far with the PMB 

suite. This information, which is presented in Table 8 and Table 9, should be very useful 

in our analysis of cGRaCCE's run time performance. 

Data Set 
Name 

Integer 
Ops 

FP Ops Max Msg 
Size (KB) 

Total Shared 
Data (KB) 

Max % 
Comm 

A ve Run 
Time (sec) 

Checker 
TH513 

6,563,800 
285,300 

42,564,100 
2,442,800 

6.77 
3.12 

23.28 
13.23 

0.34 
7.80 

517 ±41.7 
38 ±0.67 

Table 8: Measured statistics for Checker and TH513 data sets 

Throughput4 A verage* Beast" Level I 
Parallel SPECfp95 SPECint95 PingPong Sendrecv Startup Time Cache 
System (Mlips) (MBps) Time (usec) (usec) (KB) 

ABC-NT 12.4 15.3 7.62 11.77 568.91 326.01 16/16 
ABC-Linux 12.47 15.3 7.18 10.19 544.34 1858.2 16/16 
AFITNOW 9.06 6.26 7.40 8.10 738.49 1290.31 16/16 
MSRCSP2 17.6 6.17 16.58 26.07 235.58 148.12 32/128 

Table 9: Performance data for test systems 

Based on the information in these tables, we can make the following observations: 

• The SP2 has the highest floating point performance - approximately 40% 

greater than ABC and 95% greater than the AFITNOW. 

• The ABC has the highest integer performance - approximately 144% greater 

than the AFITNOW and 148% greater than the SP2. 

Measured for 8k message sizes or smaller - all messages sent out by cGRaCCE were smaller than 8k. 
5 Measured for 4k message size - average size for messages sent out by cGRaCCE. 
6 Measured at 512 byte message size - this is the largest message size within the range used by cGRaCCE for which 

Linux had a stable value (i.e. unaffected by TCP bug) 
7 No SPEC benchmark data were available for the 400 MHz PII running Linux; however, results for this processor with 

other UNIX operating systems indicated that the processor performance should be very close to the results for NT. 
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• The SP2 had the highest throughput for the PingPong benchmark - 

approximately 125% greater than the other platforms, which were all roughly 

equivalent. 

• The SP2 had the highest throughput for the Sendrecv benchmark - 

approximately 120% greater than ABC-NT, 155% greater than ABC-Linux, 

and 220% greater than the AFITNOW. 

• The SP2 had the lowest startup time - approximately 43% of ABC-Linux's, 

41% of ABC-NT's, and32% of the AFIT NOW s startup times. 

• The SP2 had the lowest Beast time - 45% of ABC-NTs, 11% of the AFIT 

NOW's, and 8% of ABC-Linux's Beast time. 

• The communication overhead of the TH513 data set is approximately 23 times 

that of the Checker data set. 

• The total data size for the Checker data set (23.28KB) is too large to fit in the 

LI cache of all of the parallel systems tested, except the SP2. 

With these observations in mind, let us now look at the run time results for 

cGRaCCE shown in Figure 21. Despite the SP2's superiority in network throughput, 

latency, startup time, broadcast performance, and floating point operations, it had the 

worst performance for all trials, with the exception of the one-processor run of the 

checker data set, where it barely outperformed the AFIT NOW. This exception was 

apparently due to the SP2's larger LI data cache, which could accommodate the entire 

checker data set. It can only be deduced that the slower processor (135MHz) in the SP2 

was no match for the faster processors in the AFIT NOW and ABC clusters. The lower 

68 



communication overhead of the SP2, however, was very noticeable, especially for the 

TH513 experiment. In this experiment, the performance gap between the SP2 and the 

other platforms steadily decreases as the number of processors is increased from one to 

five. This is, of course, due to the lower rate of increase in the communication overhead 

for the SP2, as compared to the other systems. 
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Figure 21: Run Time performance ofcGRaCCE 

The ABC-NT cluster outperformed all of the other systems for all data sets. The 

large difference in run times between ABC-NT and ABC-Linux with one processor using 

the checker data set indicate that the compiler optimizations of g++ on Linux were not as 

effective as those of MS Visual C++ on NT. Information discovered after these 

experiments were completed revealed that the particular version of g++ (2.7.2.3) used to 

compile cGRaCCE on Linux has not been optimized for the Pentium II processor. This 

may account for some of the difference in performance. An optimized version of GNU 

gcc/g++, known as Pentium GCC (PGCC) is available for free download from the 

Internet at [PGCC] and is recommended for use in future experiments with C++ code on 

Linux. 
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5.2.5 Price-Performance Evaluation 

In this section, the estimated costs-per-node of the AFIT NOW, MSRC's IBM 

SP2, and ABC cluster are used for a rough price-performance analysis. A distinction is 

not made between the ABC-NT and ABC-Linux cluster in this section because they use 

the same hardware and there is essentially no cost difference. One might argue that the 

Linux kernel is free and therefore the ABC-Linux cluster must be less expensive than the 

ABC-NT cluster. This, however, is not the case, as the computers used in this cluster, 

like most PCs sold today, came with a choice of Windows NT or Windows 95/98 

preloaded. These costs are then applicable to both systems, regardless of whether the 

system is booted under Linux or NT. Furthermore, recent announcements by Compaq, 

Gateway, and other PC manufacturers to offer Linux as a preinstalled O/S on their 

computers don't indicate any price savings for choosing this option. 

The purpose of this section is to determine the price-performance ratio of the 

ABC, SP2, and AFIT NOW. This comparison does not attempt to determine the 

maximum cost-performance capabilities of each of these systems. This issue has been 

addressed by other researchers such as [Sterli98], where the author describes Beowulf 

systems that have achieved $30/Mflop sustained price-performance rates. [Anders95] 

presented some theoretical price-performance values for a NOW and comparable MPP of 

approximately $2900/Mflop and $12,700/Mflop, respectively, but these figures are 

somewhat dated. Algorithms such as cGRaCCE are far too complex to be used for this 

type of benchmarking. Therefore, in order to avoid any confusion over the data presented 
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here, the cost-performance figures are only presented as ratios with ABC serving as the 

benchmark system with a rating of one. Ratings lower than one indicate that a system 

had a lower price-performance value than ABC and higher ratings indicate the price- 

performance was greater. These ratings are presented in Table 10. 

Parallel 
System 

Original 
System Cost 

Number Depreciated 
of Nodes Cost/Node* 

Price- 
Performance 

\th513) 

Price- 
Performance 

(checker) 

ABC 
AFIT NOW 

IBM SP2 

$27,700 
$104,000 

$10M9 

12        $1538.89 
6         $5135.80 

256       $7716.05 

1 
0.133 
0.057 

1 
0.135 
0.086 

Table 10: Price-performance for ABC, AFIT NOW, & SP2 

In this table, two separate ratings are presented based on the two data sets 

evaluated. In both cases, the ABC has a clear advantage in the price-performance 

comparison by a factor of seven or higher. In [Bakerm98], the author also experienced 

similar results when comparing the performance of two dual processor 200 MHz Solaris 

workstations with that of two dual processor 200 MHz Pentium NT workstations. 

5.2.6 Conclusions - Linux vs. NT Cluster 

In the five previous sections, we compared the performance of an NT cluster, a 

Linux cluster, a NOW, and an MPP. The following general conclusions about the 

differences between PoPCs, NOWs, and MPPs can be drawn from this comparison: 

This value is based on average annual U.S. inflation rate of 3.6% and an expected effective life span of four years for 
computer systems due to technological advances, yielding a total depreciation of approximately 33%/yr. 

9 Although requested multiple times, costs for the MSRC's SP2 were not provided. This figure is based on the cost of a 
similarly equipped Paragon sold the same year as listed by [Anders95]. 
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• The performance ofPoPCs is very competitive when compared to NOWs and 

MPPs. 

• The rapid technological advances in PC technology and lower commercial 

costs give PoPCs a clear price-performance advantage over NOWs and 

MPPs. 

Due to the aforementioned TCP bug in the Linux kernel, it is difficult to make 

general conclusions about the performance differences between NT and Linux clusters. 

The original hypothesis was that the performance of the NT cluster would be slightly 

lower than that of the Linux cluster. This hypothesis was based on the assumption that a 

Graphical User Interface (GUI) based O/S, such as NT, would naturally have a higher 

overhead, and thus produce a lower performance than a leaner O/S, such as Linux. This, 

however, did not prove to be the case. In fact, the NT cluster outperformed the Linux 

cluster for all tests with the exception of the message startup time for a small range of 

message sizes and the PingPong throughput, also for a small range of values. These 

results, as previously mentioned, may be due in part to the Linux TCP bug and more 

effective code optimizations on the NT system. In general, however, it is safe to 

conclude that: 

• Clusters of NT workstations are viable alternatives to Linux clusters for 

parallel and distributed computation. 

• NT clusters can perform as well or better than Linux clusters for 

computationally intensive algorithms. 

• Differences in communication overhead for Linux and NT clusters are small 

and for the most part insignificant. 
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5.3 Performance of MPI Tools on NT 

In this section the data collected from the Pallas benchmarks and cGRaCCE trials, 

are again used to make performance comparisons. This time the comparison is between 

the different MPI implementations for NT: MPI/Pro 1.2.3 and PaTENT MPI 4.09. As 

mentioned in Section 2.3.3.3, HPVM which is the other major MPI tool for NT, is not 

evaluated in this research, primarily due to the expense of the queuing software required 

to use the Java-based front-end and the complexity of using this software without the 

front-end. According to [Baker98], the performance of HPVM on Ethernet is very poor 

compared to the other MPI tools for NT. This is primarily due to the fact that HPVM 

was designed for Myrinet networks.[Chien97] 

5.3.1 Pallas Benchmarks 

As with the comparison of the different parallel platforms in Section 5.2, the 

PingPong, Sendrecv, and Beast benchmarks are used to compare these tools. These 

benchmarks had to be run multiple times with different versions of both MPI/Pro and 

PaTENT because of bugs in the software that surfaced under the heavy communication 

loads of the Pallas benchmarks. The technical support teams at MSTI and Genias used 

data from the experiments in this research to resolve some of these problems. Even so, a 

complete error-free run of the PMB suite with more than four processors was not 

possible. Fortunately, complete runs of the three benchmarks used for this evaluation 

with four processors were successful. 
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Information discovered after the experiments were complete indicates that at least 

part of the problem experienced in running these benchmarks may have been caused by 

the limitations of the switch used on the ABC system. According to the User's Manual 

for the Intel Express 510T switch, the maximum aggregate network bandwidth of this 

switch is 800 Mbps. When running the PMB suite with four processors, the maximum 

channel throughput produced was approximately 142.3 Mbps. Assuming an equal 

throughput on all channels, this is a total network bandwidth of approximately 569 

MBps. Using six processors and assuming the same throughput, the total network 

bandwidth would reach 854 Mbps, exceeding the maximum capacity of the switch. 

5.3.1.1 PingPong 

5.3.1.1.1 Startup Time 

As can be seen in Figure 22, MPI/Pro has a lower startup time for small message 

sizes. The difference is approximately 40% ± 2% for messages sizes up to 128 bytes and 

then decreases rapidly until it is completely negligible at 256k and above. 
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Figure 22: Startup Time for PingPong Benchmark 
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5.3.1.1.2 Channel Throughput 

As shown in Figure 23, the results of the throughput measurements for the 

PingPong benchmark were somewhat unstable for MPI/Pro and failed to produce a clear 

indication of which tool was superior in channel throughput performance. These results 

are most likely caused by unresolved bugs in the MPI/Pro code. Even so, the results do 

indicate that the throughput of both packages is very similar. 
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Figure 23: Channel Throughput for PingPong Benchmark 

5.3.1.2 Sendrecv 

As with the PingPong throughput results, the Sendrecv results, which are 

presented in Figure 24, showed very erratic behavior for MPI/Pro. Unlike PingPong, 

however, the PaTENT performance for Sendrecv began to drop significantly for message 

sizes larger than 64k, while MPI/Pro continued to experience increases in throughput up 
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to a IM message size. Again, we are unable to make conclusions about the performance 

difference between these two packages based upon the observed results. 
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Figure 24: Channel Throughput for Sendrecv Benchmark 

5.3.1.3 Beast 

The results for the Beast benchmark, shown in Figure 26, are more stable than the 

results of the previous two sections. Once again, MPI/Pro starts out with a slight 

advantage of about 40%. This advantage continues up to a 512 byte message size and 

then rapidly decreases to an insignificant amount, except for a jump at 128k. 
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Figure 25: Timing for Beast Benchmark 

5.3.2 Run Time Performance ofcGRaCCE 

Because of its low communication overhead, the cGRaCCE algorithm was not 

effective in measuring the performance differences between the PaTENT and MPI/Pro 

parallel communication libraries. The results of trials with the cGRaCCE algorithm for 

both of these tools are shown in Figure 26. 
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Figure 26: Run Time Performance ofcGRaCCE with MPI/Pro and PaTENT 
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As shown in Figure 26, the performance differences appear to be negligible. A 

"test of means", using the ANOVA method, confirms this assumption for the checker 

data set and for the TH513 data set with up to three processors. The results of these tests 

are presented in Table 11 and Table 12. In both of these tables, the test statistic for the 

samples (i.e. MPI tools) does not fall in the critical region (F < F crit). Therefore, the 

null hypothesis, Ho, that the means are equal, must be accepted. 

Anova: Two-Factor W ith  Replication 

SUMMARY 1 2   Total 
PaTENT 

Count 30 30 60 
Sum 9664.8 4800.7 14465.5 
Average 322.16 160.0233 241.0917 
Variance 139.1308 31.14392 6767.16 

M P HP ro 
Count 30 30 60 
Sum 9687.5 4846.3 14533.8 
Average 322.9167 161.5433 242.23 
Variance 188.5607 33.34254 6729.754 

Total 
Count 60 60 
Sum 19352.3 9647 
Average 322.5383 160.7833 
Variance 161.2143 32.28412 

ANOVA 
Sou rce of V ariation SS df MS F P -value F crit 
Sample 38.87408 1 38.87408     0.396494     0.530144     3.922878 
Columns 784940.4 1 784940.4     8005.961      7.1E-109     3.922878 
Interaction 4.370083 1 4.370083     0.044572     0.833163     3.922878 
Within 11373.16 116 98.04449 

Total 796356.8 119 

Table 11: ANOVA values for ABC-NT with checker data set 
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A nova: Two-Factor W it h  Replication 3  Processors 

SUMMARY 1 2 3  Total 
PaTENT   

Count 30 30 30 90 
Sum 553.32 364.4 337.53 1255.25 
Average 18.444 12.14667 11.251 13.94722 
Variance 0.000928 0.00174 0.001071 10.36053 

M P UP ro   
Count 30 30 30                     90 
Sum 553.27 365.05 338.04        1256.36 
Average 18.44233 12.16833 11.268      13.95956 
Variance 0.001225 0.007263 0.001113     10.30029 

Total   
Count 60 60 60 
Sum 1 1 06.59 729.45 675.57 
Average 18.44317 12.1575 11.2595 
Variance 0.001059 0.004544 0.001147 

ANO V A 
Source of V aria tio n SS df MS F P-value F crit 

Sample 0.006845 1 0.006845 3.078472     0.081095     3.895451 
Columns 1838.422 2 919.2108 413406.1                         0     3.047901 
Interaction 0.004573 2 0.002287 1.028406     0.359739     3.047901 
Within 0.38689 174 0.002224 

Total 1838.82 179                                                                      

Table 12: ANOVA values for ABC-NT, TH513 data set, 3-processors 

5.3.3 Conclusions - Performance ofMPI Tools for NT 

The results of this set of experiments produced no discernable performance 

difference between the two MPI tools for NT, other than a slight advantage in message 

startup times and broadcast performance by MPl/Pro for small message sizes. Errors 

encountered while running the PMB suite however indicate that there may still be 

unresolved problems with both packages, especially with MPI/Pro. 

5.4 Parallel GRaCCE (cGRaCCE) Performance 

In this section, the results of multiple trials of the cGRaCCE algorithm are used to 

analyze its speedup, efficiency, and isoefficiency.   Discussed are the various factors 
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contributing to the observed sublinear speedup and low efficiency of this algorithm in the 

majority of these trials. These factors include communication and VO overhead, load 

balancing, and the effects of instruction and data caching. This section ends with a brief 

description of the results of the ANOVA tests used to validate the experimental results 

and a summary of the conclusions made from this analysis. 

5.4.1 cGRaCCE Complexity 

A good way of estimating the performance and scalability of an algorithm is by 

calculating the algorithm's complexity. This can be very difficult with stochastic 

algorithms. For instance, the number of computations performed by the cGRaCCE 

algorithm depends on the following factors: 

1. Number of classes (c) 

2. Number of boundary points evaluated per class (b) 

3. Number of vectors (data points) in data set (d) 

4. Number of features/dimensions (f) 

5. Size of GA population (p) 

6. Length of GA chromosome (L) 

7. Number of generations per GA search (g) 

The number of classes, data points, and features are always known and the size of 

the GA population is generally kept at a fixed value (100 for this research). The length of 

the GA chromosome varies but is bounded by the total number of partitions. The number 

of boundary points evaluated per class also varies and can not be determined based solely 

on the number of boundary points in the data set. It is dependent on the number of 

boundary points per class, the dispersion of the data in that class, and the probability that 
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a boundary point will be enclosed in a region by a preceding boundary point evaluation. 

The equation for this number would be very difficult to derive, if at all possible. An 

overly conservative estimate of this number would be to use the total number of boundary 

points. The number of generations per GA search is also not constant, but is limited to 

twice the minimum number of generations. (See Section 3.3) This parameter (mingeri) is 

provided by the user at run time. For this research, mingen is used to control the problem 

size for each data set and is set to 10, 100, and 1000. Therefore, with this information in 

mind, our complexity equation might look as follows: 

Complexity - O(cBpgPf) Equation 7: cGRaCCE Complexity 

In this equation, B is the total number of boundary points and P is the total 

number of partitions/boundaries. Although the number of data points does affect the 

complexity, it is not used in this formula because the overall effect is somewhat 

complicated to determine and trivial in comparison to other factors. Using this equation, 

the anticipated total number of computations for each of the five data sets used in our 

experiments are estimated in Table 13. 

Data Set       Classes       liouiulary      (7/1 Pop Max dens      Partitions       Dims       Total Cales 
Name Points 

Checker 2 105 100 20 66 2 55,440,000 
TH513 5 61 100 20 48 2 58,560,000 
Glass 4 23 100 20 25 4 18,400,000 
Wine 3 

2 
21 
17 

100 
100 

20 
20 

17 
11 

3 6,426,000 
Cancer 9 6,732,000 

Table 13: Estimated number of computations performed by cGRaCCE 

Table 14 provides a look at some rough measurements taken during execution of 

cGRaCCE with the five data sets and unfortunately shows that our complexity algorithm 

does not provide a very tight upper bound for all data sets. Although this equation 

provides a reasonable upper bound for the checker data set, the estimated number of 
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operations for the other data sets are between six and twenty-two times larger than the 

measured values. This, again, has to do with the stochastic nature of the algorithm. With 

one data set the algorithm may evaluate ten percent of the boundary points in all classes, 

whereas, with a different data set, ninety percent of the boundary points may be 

evaluated. A detailed analysis of the complexity of the original GRaCCE algorithm can 

be found in [Marmel99]. 

Data Set Name Integer Ops i<r ops Total Ops 
Checker 6,563,800 42,564,100 49,127,900 
TH513 285,300 2,442,800 2,728,100 
Glass 231,900 1,307,400 1,539,300 
Wine 161,700 858,200 1,019,900 
Cancer 116,300 537,300 653,600 

Table 14: Actual number of computations performed by cGRaCCE 

5.4.2 Speedup 

As was pointed out in Section 4.1.1, speedup is the ratio of the parallel and serial 

run times of an algorithm. Figure 27 below show the speedup of cGRaCCE for the 

checker and TH513 data sets. These data sets were chosen for this discussion because the 

first produced a slight superlinear speedup, whereas the other showed very little speedup. 

The speedup of the other three data sets used in these experiments fell somewhere in 

between. The primary factors contributing to both of these speedups are discussed in the 

sections that follow. 
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Figure 27: Speedup for Checker and TH513 data sets 

5.4.2.1 Load Balance 

To gain the maximum speedup, an algorithm must distribute the workload evenly 

among all of the computing nodes. This is known as load balancing. As was mentioned 

in Section 3.3.4, the two major categories of load balancing schemes are static and 

dynamic. It was decided that a static load balancing scheme would be used for 

cGRaCCE. This involved distributing out each class evaluation to a separate processor. 

This scheme required that data only be passed at the beginning (distribution of the data to 

each process) and at the end (gathering of results from each process) of program 

execution. Thus, no interprocess communication is required during the parallel execution 

of cGRaCCE and the communication overhead is very low for average or larger problem 

sizes. 

This method, although successful in reducing communication overhead, resulted 

in large load imbalances for certain data sets. In these data sets, the number of boundary 

points and/or partitions evaluated for some classes is much larger than for others. The 

load balance for the checker and TH513 data sets are shown in Figure 28.  As expected 
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from the speed up results shown earlier, the load was almost evenly balanced with the 

checker data set. The TH513 data set, on the other hand, produced a very unbalanced 

workload with process one completing its work in almost a third of the time required for 

process four. Table 15 shows the division of boundary points and partitions evaluated for 

each class in the checker and TH513 data sets. As expected the distribution of work for 

checker is balanced, but, not so for TH513. One interesting observation from the charts 

and table is the fact that although processor five has the smallest work load for the TH513 

data set, it took twice as long to execute as processor one, which had a slightly larger 

workload. This observation hints at other contributing factors, one of which is discussed 

in the next section. 
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Figure 28: Load balance of cGRaCCE algorithm 

Data Set Name Class Number Bpts/Class BndslClass 
Checker 1 25 52 

2 25 52 
TH513 1 15 

2 23 
3 21 
4 23 
5 14 

Table 15: Number ofbpts and bnds evaluated per class 
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5.4.2.2 Cache Advantage 

The load imbalance discussed in the previous section provided some insight into 

the sublinear speedup of cGRaCCE for the TH513 data set, but a more in depth analysis 

is necessary to determine other contributing factors. One such factor discovered by this 

analysis was the cache advantage experienced by running multiple iterations of the 

algorithm for the serial execution and for parallel executions in which the number of 

processors was less than the number of classes in the data set. For example, the Dell PCs 

used in these experiments each have on-chip Level 1 (LI) instruction and data caches. 

Whenever, the TH513 data set is evaluated using one processor, the five classes are 

evaluated in five iterations of the outer loop of the program. After the first iteration, the 

instructions have all been loaded in the instruction cache and the data have been loaded in 

the data cache. Hence, subsequent accesses to either are very fast. The effects of this 

data and instruction caching are shown in Figure 29. 
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Figure 29: Cache advantage for TH513 data set 

In this figure, the execution time for the evaluation of class 1 remains the same for 

one to five processors. This is because class 1 is always evaluated first and hence can not 
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take advantage of cached instructions or data. Class 5, on the other hand, is evaluated 

last for one to four processors and uses cached instructions and data each time. When the 

number of processors is increased to five, this cache advantage is no longer available for 

class 5 and the execution time is approximately doubled. 

Because of the negative effect caching has on the speedup of parallel programs in 

which multiple iterations of the main code are run by individual processors, it is a 

common practice, to discard the first iteration of each loop. This is not a problem in 

programs where the loop consists of hundreds or thousands of iterations and comprises 

only a small part of the overall solution. This unfortunately is not the case with 

cGRaCCE. Each loop is an evaluation of an entire class and a major part of the overall 

solution. However, the effects of caching become less noticeable as the overall 

processing time increases. This is the reason that execution of cGRaCCE with the 

checker data set is not significantly effected by caching. Evaluation of the checker data 

set takes approximately twenty times longer than that of TH513 for the same number of 

processors and generations. Figure 30 shows the predicted speedup for TH513 if the 

cache advantage were ignored. When compared to Figure 27 shown earlier, it can be 

seen that the cache advantage is very significant, much more than load balancing, for 

small data sets. 
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Figure 30: Cache advantage ignored for TH513 data set 

We've looked at the primary factors affecting the sublinear speedup of cGRaCCE 

for the TH513 data set (coincidentally the speedup was also sublinear for the other three 

data sets tested), but what about the super linear speedup experienced with the checker 

data set. As was mentioned in Section 4.1.1, super linear speedup can usually be 

attributed to one of three primary factors as follows: 

1) A sub-optimal serial algorithm 

2) The stochastic nature of the algorithm such as a tree search in which multiple paths 

can be evaluated simultaneously to find the solution more rapidly 

3) Division of the program data into smaller units such that it fits into memory that was 

previously too small. 

In this particular case, the third factor applies. Table 16 shows the total size of the 

data that is passed to each processor for a particular data set. Table 17 shows the size of 

the Level 1 cache for each of the three systems used in this research. The data for all of 

the data sets, except checker, are small enough to fit into the LI data cache on all of the 

systems. Since the LI data cache on the SP2 is large enough to house the entire data set 
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for checker, superlinear speedup should not be observed. This is indeed the case as is 

shown in Figure 27. As for the other systems, although the entire data set is passed to 

each processor, only a portion of these data is used for the majority of the program 

execution. This portion apparently fits into the LI cache on the ABC and NOW. This 

allows faster access to the data and the evaluation of each class takes less time than on a 

single processor thus producing a super linear speedup. 

Data Set Name 
Checker 
TH513 
Glass 
Wine 
Cancer 

Total Message Size (KB) 
23.28 
13.23 
3.13 
2.52 
12.46 

Table 16: Size of data passed for each data set 

Processor 
Dell 400 MHz Pentium II (ABC) 
Sun 167 MHz UltraSPARC (NOW) 
IBM 135 MHz P2SC (SP2)  

Instruction/Data Cache Size (KB) 
16/16 
16/16 

32/128 

Table 17: Size of Level 1 cache 

5.4.2.3 Communication Overhead 

Although it has been noted that the chosen parallelization method for cGRaCCE 

significantly reduces the communication overhead, it can not be completely ignored. As 

with the majority of algorithms, the communication overhead for cGRaCCE increases as 

the number of processors are increased. This increase eventually leads to reduced 

performance and lower efficiency. This overhead is especially noticeable for smaller 

problem sizes, where the communication-to-computation ratio is high. In Figure 31 

below, the speedup for the TH513 data set levels out at four processors for each of the 

systems tested, with the exception of the SP2.    This is understandable since the 
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throughput, startup time, and latency on the SP2, according to the Pallas benchmark 

results discussed in Section 5.2, is better than that of the AFIT NOW or ABC clusters. 
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Figure 31: Effects of communication overhead on speedup 

5.4.3 Efficiency 

As was mentioned in Section 4.1.2, the efficiency of a parallel algorithm is a 

measure of the fraction of time for which a processor is busy doing useful work and is 

defined as the ratio of the speedup to the number of processors. Thus, as one would 

expect a small speedup indicates a low efficiency and a large speedup a high efficiency. 

With this in mind, the results of Figure 32 are no surprise. 
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Figure 32: cGRaCCE Efficiency with Checker and TH513 data sets 
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In this figure, results of cGRaCCE with the checker data set, which exhibited a 

superlinear speedup for all platforms except the SP2, show an efficiency of one or 

greater. With the TH513 data set, the efficiency is 20% to 50% lower than with the 

checker data set, again showing the side effects of the cache advantage, load imbalance, 

and higher communication overhead discussed in the last section. Figure 33 displays the 

efficiency that is expected if the cache advantages of loop iterations greater than one are 

ignored. This gives a good picture of the scalability of the cGRaCCE algorithm, which 

as shown in the chart below, is capable of efficiencies, ranging from 77% to 97% even 

with the rather heavy load imbalance of the TH513 data set. 
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Figure 33: Predicted Efficiency with cache advantage ignored 

5.4.4 Isoefficiency 

In Section 4.1.3, we defined isoefficiency as "the rate at which the problem size 

must to increased to maintain a fixed efficiency." This value gives us a good indication 

of the scalability of an algorithm. Unfortunately, it is not always possible to determine 

the isoefficiency of an algorithm that is stochastic. That is, in a single trial, a particular 

problem size increase may maintain the same efficiency as the number of processors is 
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increased by one.   In a subsequent trial, the stochastic algorithm may converge to a 

solution faster even with the same problem size resulting in a higher efficiency. 

Another problem that is more specific to the cGRaCCE algorithm is the definition 

of the problem size. In the experiments with cGRaCCE, we varied the problem size by 

using data sets with varying numbers of data points, boundary points, partitions, features, 

and classes. We also varied the problem size by increasing the minimum number of 

generations for the GA search from ten to one thousand. We could have also changed the 

problem size by varying the size of the GA population, the mutation and crossover 

probabilities, the cluster purity level, the maximum number of partitions evaluated per 

boundary point, and many other parameters. Therefore, defining the problem size for 

cGRaCCE is within itself quite complex. 

Furthermore, to derive an effective isoefficiency function it is necessary to start 

with a valid complexity equation for the algorithm and as is explained in Section 5.4.1, 

this is very difficult, if not impossible, to derive for the cGRaCCE algorithm. Thus, with 

all of these factors in mind, a derivation of the isoefficiency function for cGRaCCE is not 

included. 

5.4.5 Statistical Validation 

As was described in Section 4.3, the ANOVA test was applied to each sample 

population with a 0.05 level of significance (95% C.I.). This test served two primary 

functions. First, it served to show that the data collected from the experiments was valid 
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for comparison. Second, it was used as a "test of means" to determine if the difference 

between two sample populations was of statistical significance. Some examples of the 

analysis of variance tables produced by these tests are shown in Appendix C. 

5.4.6 Conclusions - cGRaCCE Performance 

In this section, we have looked in detail at the results produced by several trials of 

the cGRaCCE algorithm with different sets of test data. For one of these data sets 

(checker), we experienced superlinear speedup, which was determined to be caused by 

the decomposition of the data into smaller segments, which fit into the LI cache of 

remote processors. For the remaining data sets, cGRaCCE exhibited low speedup and 

efficiency. A careful analysis of the results revealed the following contributing factors: 

1) unequal load balancing, 2) first-iteration caching, and 3) communication overhead. 

Because there is no interprocessor communication with cGRaCCE, other than the 

initial   data  distribution  and  the   final  collection  of results,   the  effects   of  the 

communication overhead proved to be marginal for all but the smallest problem sizes. 

Also, the effect of load imbalances observed for most data sets, although significant was 

determined to only be a minor contributor to the low speedup and efficiency. The major 

factor of the three was the first-iteration caching. It was pointed out that ignoring initial 

loop iterations in parallel programs is a common practice for more accurately determining 

the scalability of an algorithm. Since the amount of time to load data and instructions in 

the cache during the first iteration of a loop is marginal with large data sets where the 

number of loops is much greater than those normally found in test data, this practice is 
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completely valid. Therefore, by estimating the performance of cGRaCCE minus the 

effects of caching, we were able to realize efficiencies of greater than 75% for all tested 

data sets. Although these efficiencies fall short of the ideal, they show that even with 

unequal load balancing the cGRaCCE algorithm is capable of relatively good 

performance. The recommended next step in improving the cGRaCCE algorithm is to 

devise a dynamic load balancing scheme that more evenly distributes the work load 

among all of the processors without significantly increasing the communication 

overhead. 
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6     Conclusions/Recommendations 

6.1 Review 

Chapter 1 defines the objectives and goals of this research effort. Chapter 2 

provides appropriate background on parallel computing and data mining, including some 

of the general principles and current research. In Chapter 3, the problem domain and 

algorithm domain is discussed. Chapter 4 presents the experiment design and general 

methodology for completing this research. Using the results of the experiments described 

in Chapter 4, a detailed data analysis is presented in Chapter 5. This Chapter culminates 

the thesis research with a summary of the conclusions presented in Chapter 5, a 

discussion of the contributions of this effort, and recommendations for future research. 

6.2 Summary 

The conclusions for each of the three main objectives of this research are 

presented in Chapter 5. Those conclusions are summarized as: 

• The efficiency/performance of Linux and NT PoPCs is very competitive to that 

demonstrated by NOWs and MPPs. 

• The rapid technological advances in PC technology and lower commercial 

costs give PoPCs a clear price-performance advantage over NOWs and 

MPPs. 

• Clusters of NT workstations are viable alternatives to Linux clusters for 

parallel and distributed computation. 

• NT clusters can perform as well or better than Linux clusters for 

computationally intensive algorithms. 

• Differences in communication overhead for Linux and NT clusters are small 

and for the most part insignificant. 

94 



• The MPIIPro and PaTENT MPI communication libraries for Windows NT 

demonstrate no significant difference in performance in trials with up to six 

PCs. These tools are still relatively new and some bugs are still being worked 

out. 

• The parallel C++ version of the GRaCCE algorithm, known as cGRaCCE, 

achieves a significant efficiency/performance advantage over the original 

MatLab code. This advantage, although not precisely measured, is at least an 

order of magnitude based on results from runs with the same data sets using 

both algorithms. 

• The static load balancing scheme used by cGRaCCE results in a significant 

load imbalance for the majority of tested data sets. 

• Ignoring the effects of data and instructions caching, the cGRaCCE algorithm 

is capable of relatively high efficiencies (77%-97%) even with a significant 

load imbalance. 

• The communication overhead of the cGRaCCE algorithm is relatively trivial, 

averaging less than 2.3% of total execution time for all trials with a moderate 

workload of 1000 generations . 

6.3 Contributions 

This research has made several contributions to the field of Computer 

Science/Computer Engineering, particularly in the areas of parallel computing and data 

mining. Some of the specific contributions are outlined below: 

• Provides one of the first detailed comparisons of the performance of NT 

versus Linux clusters. By showing that NT clusters are viable alternatives to 

"free" UNIX-type clusters for parallel and distributed processing, a whole 

new door of opportunity is opening up to both academia and the commercial 

world where Windows NT has gained a strong foothold.   This is especially 
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significant to the Air Force in light of recent policies that define NT as the 

O/S of choice for all Air Force LAN servers and desktops. 

• Demonstrated that PoPCs are viable alternatives to Networks of Workstations 

and Massively Parallel Processors. This effort builds on the current PoPC 

research, such as NASA's Beowulf project, with the added twist of evaluating 

NT, as well as Linux clusters. Price-performance comparisons show that 

relatively high performance parallel computing can be attained at commodity 

prices, allowing even organizations with comparably small IT budgets to take 

advantage of the benefits of distributed processing. 

• Showed that MPI implementations for NT, although still somewhat immature, 

are capable of competitive performance when compared with similar MPI 

implementations for UNIX. This research also showed that the two primary 

MPI tools (MPI/Pro and PaTENT MPI) for NT are relatively equal in 

performance, allowing consumers some choice of which tool to use. 

• Provided the sponsor with parallel C+ + code implementing the major portion 

of the original GRaCCE algorithm. Although this algorithm as demonstrated 

is not the most efficient version possible, it is at least an order of magnitude 

faster that the original MatLab code. This algorithm provides the data mining 

community with an alternative to the traditional decision tree algorithms, 

which significantly reduces the complexity of the rule set for about the same 

accuracy and performance. 
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6.4 Proposals for Future Research 

This research provided useful insight into the parallel tools for NT clusters and 

potential of the GRaCCE algorithm on a parallel system. Nevertheless, there are several 

potential areas left unexplored which could contribute to this research effort. The 

following areas are recommended for future research: 

• Explore the use of an efficient dynamic load balancing algorithm for the 

parallel GRaCCE algorithm. The schemes outlined in [El-Rew94] are 

probable candidates if the algorithm is rewritten to run the boundary point 

searches in parallel rather than only the class searches. 

• Optimize the memory handling functions in the current parallel GRaCCE 

code to reduce communication time and memory usage. The converted C++ 

code for GRaCCE uses static memory allocation for the majority of the data 

structures used in this algorithm. Although this design decision proved 

sufficient for the test data used for this research, it limits the scalability of the 

algorithm. This constraint could be at least partially removed by using 

dynamic memory allocation for all data structures and freeing any memory 

when the data in it are no longer needed. 

• Investigate possible optimizations to reduce the overhead imposed by the 

Windows NT operating system. Although the comparison of NT and Linux 

clusters showed no significant disadvantage caused by NT's much larger O/S 

code, the possibility of gaining performance by reducing overhead still exists. 

Possible optimizations include:  1) running parallel programs without the 
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graphical user interface (Explorer) on NT, 2) optimizing the TCP/IP stack or 

installing one that is more efficient, and 3) shutting down or removing any 

non-critical services from NT. Optimizations dealing with real-time NT 

performance are discussed in [Timmer97]. 

• Investigate possible optimizations for the Linux environment. Two such 

optimizations are discussed in Chapter 5. First, the TCP bug needs to be 

corrected by either implementing the recommended fix [NIST] and recompiling 

the kernel or by upgrading the kernel to a version that is unaffected by this 

bug. Second, a C++ compiler that is optimized for the Pentium II 

environment, such as PGCC, needs to be loaded on the Linux system and used 

for all future C++ code. A third possible optimization would be to investigate 

the use of "leaner" faster messaging layers in lieu of TCP/IP. One such 

messaging layer that is currently available for Linux is the Illinois Fast 

Messages (FM).[Pakin95] 

• Investigate the use of threads for increased parallel performance with both 

NT and Linux. Since both of these operating systems support the use of 

threads, it may be possible to increase performance by distributing the 

workload assigned to a processor among multiple threads. This would be 

used in conjunction with message passing. 
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Appendix A: General Overview of Parallel Processing 

A.l     Introduction 

Whether it be transportation or communication, mankind has always bemoaned 

his "need for speed" in all that he has attempted to do. This is no different in the world of 

computing. Even as processors become faster and faster, the gap between the available 

and "needed" computing power is stretched by mankind's attempt to tackle increasingly 

complex problems. Parallel processing has made progress in narrowing this gap by 

utilizing the power of multiple processors to solve a single problem in parallel. 

One can find many illustrations of parallel processing in the real world. For 

instance, race car drivers in an attempt to minimize the time required for pit stops, utilize 

the services of a crew of personnel to simultaneously perform all necessary tasks such as 

changing tires, refueling, cleaning windshields, etc. If these tasks were performed 

serially by a single crewmember, there would be no need for the driver to re-enter the 

race, as he would be much too far behind to successfully compete. Likewise, in the 

world of computing, a particular problem often consists of a collection of independent 

tasks, which can be completed concurrently. This inherent "parallelism", as it is called, 

provides the driving force behind parallel computing. 

As was briefly mentioned in Chapter 1, two advances that have made parallel 

processing possible have been the development of faster, less expensive interconnection 

networks for connecting processors and memory and the development of standardized 
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tools for programming parallel applications. These advancements are discussed in 

general in the sections that follow. However, it is necessary to first provide a brief 

overview of the general principles of parallel processing, beginning with the 

classification method for parallel computers devised by Flynn.[Hynn66] 

A.l.l   Flynn's Taxonomy 

Traditional serial computers are based on the Von Neumann model. This model 

consists of a central processing unit (CPU) and memory, which takes a single sequence of 

instructions and operates on a single sequence of data. In 1966, Michael Flynn 

introduced a classification of parallel computers based on their control mechanism and 

memory configuration. [Flynn66] Under this classification, the Von Neumann model is 

referred to as a single instruction stream, single data stream (SISD) computer. A 

computer in which a single control unit issues instructions to each processing element is 

referred to as a single instruction stream, multiple data stream (SIMD) computer. 

Multiple instruction stream, multiple data stream (MIMD) computers, such as the Intel 

Paragon XP/S, allow each processor to execute a different program independent of the 

other processors. Flynn's model also includes multiple instruction stream, single data 

stream (MISD) computers although in reality there are no commercial examples of these 

computers. MIMD computers are the most popular for modern MPPs and provide the 

greatest flexibility. An illustration of a typical SIMD and MIMD architecture is shown in 

Figure 34. [Kumar94] The two primary communication architectures for MIMD computers 

are discussed in the next section. 
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PE: Processing Element 

Global 
control 
unit 

SIMD MIMD 

Figure 34: Layout of a typical SIMD and MIMD architecture 

A.1.2   Shared Memory vs. Message-Passing Architectures 

In order to run a parallel application, there must be some way of communicating 

between processors. MIMD computer architectures are divided into two main groups 

based on their method of interprocessor communication - message-passing and shared- 

memory. Both of these architectures are illustrated in Figure 35. lKumariH] rRassda91] ^ a 

message-passing architecture, each processor has its own memory and communicates via 

an interconnection network (ICN). The processors can only communicate with other 

processors by passing messages. Shared-memory computers, as the name implies, 

provide a common memory for all processors. These processors communicate by 

changing data values in this address space. This research is limited to message-passing 

MIMD systems, which include PoPCs, NOWs, and most modern MPPs. 
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Figure 35: Two Primary Architectures for MIMD Computers 

A.1.3  Interconnection Networks 

A variety of interconnection networks may be used to connect processors and 

memory banks in shared-memory and message-passing computers. These networks can 

be classified into two major categories: static and dynamic. In dynamic networks, the 

path between processors and memory banks is dynamically determined by the use of 

switches and communication links. This type of network is commonly used in shared- 

memory computers. Static networks, on the other hand, are primarily used in message- 

passing architectures. These networks employ direct connections between processors. 

A.1.3.1Dynamic Interconnection Networks 

In order to reduce the number of switches required to connect processors to global 

memory, the global memory is divided into memory banks. In dynamic interconnection 
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networks, these memory banks are connected to the processors in one of three primary 

configurations: crossbar switching networks, bus-based networks, and multistage 

interconnection networks. An example of each of these is illustrated in Figure 36. A 

crossbar switch is simply a grid of switching elements, which connects p processors to b 

memory banks. This switch requires p x b switching elements. Since it is unfeasible to 

have fewer memory banks than processors, the complexity of this system increases as the 

number of processors increase as Q(p2). Hence, crossbar switches are unscalable in terms 

of cost. Examples of crossbar switched networks include the Cray Y-MP and Fujitsu 

VPP 500 [Kumar94l 

Processors Memory banks 
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■ : • 
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I 
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Crossbar Switch Bus-Based Network Multistage Interconnection Network 

Figure 36: Dynamic Interconnection Networks 

As with crossbar switches, bus-based networks are simple to construct. 

Processors and global memory are connected by means of a common data bus. Data 

requests and fetches are accomplished over the same bus. Since buses can carry only a 

limited amount of data, the processors may have to wait for memory accesses. This can 

lead to bottlenecks as the number of processors is increased. This problem can be 

partially alleviated by providing each processor with its own local cache memory, thus 

taking advantage of locality of reference. However, this technique may lead to cache 

coherency problems. That is, an outdated value may be read from the global memory by 
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one processor before it can be updated from the local cache of a second processor. Even 

with local cache memories, the bus bottleneck can become a problem as the number of 

processors is increased beyond a certain level. Thus, it is uncommon to see these systems 

with more than 64 processors. [Tanenb95] 

Multistage interconnection networks provide a middle ground between the high 

cost of crossbar switches and low performance of bus-based networks. These networks 

consist of multiple stages of interconnection patterns between processors and memory 

banks. At each stage, p inputs are connected to p outputs. The basic switching elements 

allow pass-through and crossover connections as a means of providing paths between all 

processors and memory banks. Using these stages, the required number of switches is 

significantly less than that needed for a crossbar switch, thus reducing costs. However, 

unlike the crossbar switch, multistage networks are blocking networks. That is, access to 

a specific memory bank by one processor may disallow access to another memory bank 

by another processor. An example of one commonly used multistage network, shown in 

Figure 37, is the Omega network, which is used in the IBM SP2. [Kumar94] 
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Figure 37: Omega Interconnection Network (used in IBM SP2) 
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A.1.3.2Static Interconnection Networks 

As was mentioned earlier, static networks are commonly used to connect 

message-passing computers. One of the faster, as far as communication speeds, is the 

completely-connected network. As the name implies, each processor is directly 

connected to every other processor in the network. This is the fastest static network 

because each message has to traverse only one communication link between any two 

processors. However, it is also the most expensive in terms of communication links. 

This network is the static equivalent of the dynamic crossbar switching network; 

however, unlike the crossbar, the completely-connected network supports concurrent 

multi-channel communication from a single processor. The completely-connected 

network, as well as, the star, linear array, and ring networks, is illustrated in Figure 38. 

[Kumar94] 

o-#-#-o 
.•-CKM} 

Completely-Connected Star linear Array &Rng 

Figure 38: Static ICNs - Completely-connected, star, linear array, & ring 

In a star-connected network, communication between any two processors must be 

routed through a central processor. This processor can become a bottleneck as 

communication increases. The linear array is the simplest static network. All processors 
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are connected to two other processors, except at the ends. When a wraparound is added 

to the end processors, the linear array becomes a ring. Both the linear array and ring 

networks are special cases of a tree network. In a tree network, there is only one path 

between any pair of processors. A tree network may be static or dynamic. A static tree 

has processors at every node, whereas, a dynamic tree has processors only at the leaf 

nodes and switches at all intermediate nodes. Because all communication between 

processors must travel up the tree, communication bottlenecks can occur at the higher 

levels. This can be partially alleviated by increasing the number of communication links 

at higher levels. This type of tree is known as a fat tree. The tree and 2D Mesh networks 

are illustrated in Figure 39. [Kumar94] 

Tree network 2D Mesh w/ wraparound 

Figure 39: Static Interconnection Networks - Tree & 2D Mesh 

A linear array, which has been extended into two dimensions, is known as a two- 

dimensional mesh. With the exception of the boundary processors, each processor in a 

mesh has a direct communication link with four other processors. If the boundary 

processors  have  wraparounds,  then  this  is  true  of all  processors  in  the  mesh. 
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Communication in a mesh is accomplished by first sending a message along one 

dimension and then another dimension until it reaches the desired destination. Examples 

of mesh-based computers include the Paragon XP/S and the Cray T3D. 

• 

# 

1-D 2-D 3-D 

Figure 40: Static Interconnection Networks -1-, 2-, & 3-dimensionsal hypercubes 

One of the most versatile static networks is the hypercube, shown in Figure 40. It 

is a "multidimensional mesh of processors with exactly two processors in each 

dimension."[Kumar94] The number of processors in a hypercube is equal to 2d, where d is 

the number of dimensions. A d+1-dimensional hypercube is constructed by linking the 

processors of two d-dimensional hypercubes. The binary representation of the labels of 

each pair of directly-connected processors differ by at most one bit position. This is 

important when distributing data to processors for parallel computation, as it can be used 

to reduce communication overhead. Each processor in a hypercube is connected to d 

other processors and the shortest path between any two processors cannot have more than 

d links. Traditionally a very popular choice for MPPs, hypercubes networks containing 

up to 16,384 CPUs are commercially available, but their popularity has waned in recent 
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years.   [Tanenb95]   The nCUBE 2 and Cosmic Cube are examples of some hypercube 

network computers. 

A.1.3.3Cosl/Performance Metrics 

It is important to evaluate the tradeoffs of each of the different static network 

types to determine the "best" choice for a particular application. Some of the criteria, 

which can be used, includes network diameter, arc connectivity, bisection width, and 

cost.[Kumar94] The network diameter is defined as the maximum distance between any two 

processors in a network. Shorter diameters are better, as this reduces communication 

times. As was mentioned earlier, the completely-connected network is the fastest in 

terms of communication speed, with a diameter of one. The linear array is the slowest 

with a diameter of p-1. Arc connectivity is the minimum number of arcs that must be 

removed to break a network into two disconnected networks. Higher connectivity is 

desirable, as it reduces the possibility of resource contention or downtime. The 2-D 

wraparound mesh and hypercube both have good connectivity. A measure of the 

minimum number of links that have to be removed to partition the network into equal 

halves defines the bisection width. Since a hypercube is constructed by connecting two 

sets of p/2 processors, its bisection width is p/2. Lastly, the cost which may be defined as 

the number of communication links required by a network is highest for the completely- 

connected network, p*(p-l)/2, and lowest for the ring, p. A summary of the metrics for 

each of the static networks discussed is presented in Table 18. [Kumar94] 
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Network Diameter     Bisection Width      Arc Connectivity     Cost (No. of links) 
Completely-connected 
Star 
Linear array 
Ring 
2-D mesh w/o wraparound 
2-D wraparound mesh 
Hypercube 

1 
2 

p-1 
Lp/2j 

2(p1/2-D 
LP

1/2/2j 
logp 

p2/4 
1 
1 
2 

p"2 

2p1/2 

p/2 

P-1 
1 
1 
2 
2 
4 

lo£P 

p(p-l)/2 
p-1 
p-1 

2(pPp1/2) 
2p 

(P log P)/2 

Table 18: Metrics for Static Interconnection Networks 
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Appendix B: AFIT Bimodal Cluster 

The figure below is a diagram of the AFIT Bimodal Cluster (ABC) of NT/Linux 

PCs. The cluster as shown in this diagram has been in existence since Jan 5, 1999. The 

inaugural run of the original four-node cluster was on May 19,1998. 

AFIT Bimodal Cluster 

a/o 5 Jan 99 
Christopher.Bohn@afit.af.mil 

Figure 41: Diagram of AFIT Bimodal Cluster (ABC) 
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Appendix C: Analysis of Variance Tables 

Since the ANOVA test requires that the samples tested be normally distributed, a 

"large" number of trials (i.e. 30) were run to ensure a normal distribution. The 

distribution was also checked using the SAS/JMP tool and Microsoft Excel. Results from 

two of these tests are shown in Figure 42. 

Sample distribution 

-2-10 1 2 

Standard Deviations from mean 

Figure 42: Plot of Sample distribution using SAS/JMP and Excel 

The tables that follow were produced using the ANOVA tool in Microsoft Excel 

97. A summary of the analysis is presented at the bottom of each table. The values 

shown in this summary are as follows: 

• Sample - This is the amount of variation between each sample. In these 

tables, the samples are the different platforms. This was the largest source of 

variation for both tables. This tells us that the platform used had the greatest 

effect on the performance of the algorithm. 
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• Columns - This is the amount of variation between each column. In this case 

the column represents the number of processors and was the second largest 

source of variation as expected. 

• Interaction - This is the amount of variance between a cross section of the 

rows and columns. In other words, this represents all of the other factors that 

cause the performance to vary nonlinearly on each system. These include 

such things as cache memory sizes, network bandwidth, and network latency. 

This value is lower than the "sample" and "columns" value and indicates that 

we can compare these two factors, but need to look at other factors also. 

• Within - This represents the amount of variation within each sample and is 

the lowest source of variation. A high number here represents errors in the 

sample. These could be caused by such things as heavy CPU utilization by 

processes external to the executing program, network glitches, or failed nodes. 

Table 19 presents the results of applying the ANOVA test to data collected from 

all trials of cGRaCCE with the TH513 data set for a problem size of 1000 generations. 

Several observations can be made from the data that validate conclusions made in 

Chapter 5. These observations are: 

1)  The test statistic (F) falls in the critical region (i.e. > F crit) for all sources of 

variation indicating that: 

a)  The mean is different for each platform (i.e. the performance varied from one 

platform to another). 
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b) The mean changes as the number of processors is increased (i.e. the performance 

varies with the number of processors). 

c) The interaction means are not equal. This indicates that there are factors (e.g. 

load balance) other than platform and number of processors affecting the 

performance of cGRaCCE. 

2) The largest variance/average ratio is produced by trials with Linux on three and four 

processors. This indicates a problem, which was determined to be caused by a TCP 

bug in the Linux kernel. 

Anova: Two-Factor W 

SUMMARY 
ABC-NT 

it h Rep licat 

1 

ion 
N u m b er of 

2 
P rocesso rs 

3 4 5 Total 

Count 
Sum 
A v e rage 
V aria n ce 

ABC -Linux 

30 
553.27 

1 8.44233 
0.001 225 

30 
365.05 

1 2.1 6833 
0.007263 

30 
338.04 
1 1 .268 

0.001 1 1 3 

30 
261 .583 

8.71 9433 
0.003776 

30 
261 .638 

8.721 267 
0.001 076 

1 50 
1 779.581 
1 1 .86387 
12.78551 

Count 
Sum 
A v e rag e 
Variance 

AFIT NOW 

30 
751 .89 
25.063 

0.006091 

30 
496.35 
1 6.545 

0.003233 

30 
496.45 

1 6.54833 
1 5.231 2 

30 
375.1 1 

1 2.50367 
9.1 25045 

30 
351 .05 

1 1 .701 67 
0.001 987 

150 
2470.85 

1 6.47233 
27.35748 

Count 
Sum 
A v e rag e 
Variance 

IBM   SP2 

30 
1 281 .71 

42.72367 
0.1 34038 

30 
827.28 
27.576 

0.222563 

30 
787.25 

26.241 67 
0.01 1 373 

30 
578.97 
1 9.299 

0.07734 

30 
578.27 

1 9.27567 
0.057963 

1 50 
4053.48 
27.0232 

74.01 243 

Count 
Sum 
Average 
V ariance 

Total 

30 
2575.78 

85.85933 
1 4.51 41 4 

30 
1 561 .1 5 

52.03833 
1 0.54788 

30 
1 444.81 

48.1 6033 
3.479638 

30 
1 096.72 

36.55733 
4.6771 24 

30 
894.8 

29.82667 
2.1 1 2547 

1 50 
7573.26 
50.4884 

385.381 3 

Count 
Sum 
A v e rage 
V ariance 

ANOVA 

1 20 
51 62.65 

43.02208 
699.8266 

1 20 
3249.83 

27.081 92 
243.7639 

1 20 
3066.55 

25.55458 
205.41 43 

1 20 
2312.383 
1 9.26986 
1 1 8.3288 

1 20 
2085.758 
1 7.381 32 
67.5205 

S ource o f V a ria tlo n SS df MS F P -value F crit 
Sam pie 
C olu m n s 
In teractio n 
W ithin 

Total 

1 33572.2 
491 55.57 
23529.1 2 
1 746.282 

208003.2 

3 
4 

1 2 
580 

599 

44524.08 
12288.89 

1960.76 
3.01 083 

1 4787.97 
4081 .563 
651 .2356 

0 
0 
0 

2.620268 
2.387296 
1 .768871 

Table 19: ANOVA values for TH513 data set on all platforms 
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Conclusions la, lb, and lc from the previous discussion of the ANOVA results in 

Table 19, also apply to the ANOVA results for cGRaCCE with the checker data set in 

Table 20. Additionally, the interaction value is much lower in proportion to the other 

sources of variance for this data set, indicating that the platform and number of 

processors has a greater effect on performance than other factors such as load balance and 

caching. 

Anova: Two-Factor W 

SUMMARY 
ABC-NT 

ith  Replicat 

1 

io n 
N u mbe r of 

2 
P rocessors 
Total 

Count 
Sum 
A v e rag e 
V a ria n ce 

ABC -Linux 

30 
9664.8 
322.1 6 

1 39.1 308 

30 
4800.7 

1 60.0233 
31 .1 4392 

60 
1 4465.5 

241 .091 7 
6767.1 6 

Count 
Sum 
A v e rag e 
V arian ce 

AFIT NOW 

30 
1 5334.1 

511.1 367 
27482.21 

30 
651 9.6 
21 7.32 

48.0671 7 

60 
21 853.7 

364.2283 
35479.69 

Count 
Sum 
A v e rag e 
V arian ce 

30 
21 782.6 

726.0867 
1 449.481 

30 
1 0663.6 

355.4533 
67.85568 

60 
32446.2 

540.77 
35670.1 5 

IBM   SP2 
Count 
Sum 
A v e rag e 
V a ria n ce 

Total 

30 
21017.1 

700.57 
1431 .092 

30 
1 1 093.8 

369.7933 
589.6331 

60 
321 1 0.9 

535.1 81 7 
2881 0.15 

Count 
Sum 
A v e rage 
Variance 

1 20 
67798.6 

564.9883 
34206.52 

120 
33077.7 

275.6475 
8247.63 

ANOVA 
S ource of V aria tio n SS df MS F P-value F crit 

Sam pie 
C o lu m ns 
In te ractio 
W ith in 

n 

3778229 
5023087 

367895 
90591 9.8 

3 
1 
3 

232 

1 259410 
5023087 

1 22631 .7 
3904.827 

322.5264 
1 286.379 
31 .4051 5 

1 .86E-82 
1 .29E-96 
4.48E-1 7 

2.64351 
3.881 851 

2.64351 

Total 10075130 239 

Table 20: ANOVA values for Checker data set on all platforms 
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